Biomechanics and Modeling in Mechanobiology

, Volume 16, Issue 5, pp 1535–1553 | Cite as

An ovine in vivo framework for tracheobronchial stent analysis

  • Donnacha J. McGrathEmail author
  • Anja Lena Thiebes
  • Christian G. Cornelissen
  • Mary B. O’Shea
  • Barry O’Brien
  • Stefan Jockenhoevel
  • Mark Bruzzi
  • Peter E. McHughEmail author
Original Paper


Tracheobronchial stents are most commonly used to restore patency to airways stenosed by tumour growth. Currently all tracheobronchial stents are associated with complications such as stent migration, granulation tissue formation, mucous plugging and stent strut fracture. The present work develops a computational framework to evaluate tracheobronchial stent designs in vivo. Pressurised computed tomography is used to create a biomechanical lung model which takes into account the in vivo stress state, global lung deformation and local loading from pressure variation. Stent interaction with the airway is then evaluated for a number of loading conditions including normal breathing, coughing and ventilation. Results of the analysis indicate that three of the major complications associated with tracheobronchial stents can potentially be analysed with this framework, which can be readily applied to the human case. Airway deformation caused by lung motion is shown to have a significant effect on stent mechanical performance, including implications for stent migration, granulation formation and stent fracture.


Biomechanical Lung Tracheobronchial Nitinol Stenting Finite element method 



The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013 under grant agreement \(\hbox {n} {^{\circ }}\) NMP3-SL-2012-280915) PulmoStent. Funding from the College of Engineering and Informatics at NUI Galway through a College Scholarship is also acknowledged, along with funding support provided by the Structured Ph.D. Programme in Biomedical Engineering and Regenerative Medicine (BMERM). Funded under the Programme for Research in Third-Level Institutions (PRTLI) Cycle 5 (Strand 2) and co-funded under the European Regional Development Fund (ERDF). The authors wish to acknowledge the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. Al-Mayah A, Moseley J, Velec M et al (2010) Deformable image registration of heterogeneous human lung incorporating the bronchial tree. Med Phys 37:4560–4571. doi: 10.1118/1.3471020 CrossRefGoogle Scholar
  2. Al-Mayah A, Moseley J, Velec M, Brock K (2011) Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy. Phys Med Biol 56:4701–13. doi: 10.1088/0031-9155/56/15/005 CrossRefGoogle Scholar
  3. Alastrué V, Garía A, Peña E et al (2010) Numerical framework for patient-specific computational modelling of vascular tissue. Int J Numer Method Biomed Eng 26:35–51. doi: 10.1002/cnm.1234 CrossRefzbMATHGoogle Scholar
  4. Auricchio F, Taylor R, Lubliner J (1997) Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput Methods Appl Mech Eng 146(3):281–312CrossRefzbMATHGoogle Scholar
  5. Bähr A, Wolf E (2012) Domestic animal models for biomedical research. Reprod Domest Anim 47:59–71. doi: 10.1111/j.1439-0531.2012.02056.x CrossRefGoogle Scholar
  6. Bolliger CT, Sutedja TG, Strausz J, Freitag L (2006) Therapeutic bronchoscopy with immediate effect: laser, electrocautery, argon plasma coagulation and stents. Eur Respir J 27:1258–1271. doi: 10.1183/09031936.06.00013906 CrossRefGoogle Scholar
  7. Bols J, Degroote J, Trachet B et al (2013) A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J Comput Appl Math 246:10–17. doi: 10.1016/ MathSciNetCrossRefzbMATHGoogle Scholar
  8. Chaure J, Serrano C, Fernández-Parra R et al (2016) On studying the interaction between different stent models and rabbit tracheal tissue: numerical, endoscopic and histological comparison. Ann Biomed Eng 44:368–381. doi: 10.1007/s10439-015-1504-3 CrossRefGoogle Scholar
  9. Chung F-T, Chen H-C, Chou C-L et al (2011) An outcome analysis of self-expandable metallic stents in central airway obstruction: a cohort study. J Cardiothorac Surg 6:46. doi: 10.1186/1749-8090-6-46 CrossRefGoogle Scholar
  10. Chung FT, Lin SM, Chen HC et al (2008) Factors leading to tracheobronchial self-expandable metallic stent fracture. J Thorac Cardiovasc Surg 136:1328–1335. doi: 10.1016/j.jtcvs.2008.05.039 CrossRefGoogle Scholar
  11. Conway C, Sharif F, McGarry JP, McHugh PE (2012) A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc Eng Technol 3:374–387. doi: 10.1007/s13239-012-0104-8 CrossRefGoogle Scholar
  12. Crum WR, Hartkens T, Hill DLG (2004) Non-rigid image registration: theory and practice. Br J Radiol 77:S140–S153. doi: 10.1259/bjr/25329214 CrossRefGoogle Scholar
  13. Dooms C, De Keukeleire T, Janssens A, Carron K (2009) Performance of fully covered self-expanding metallic stents in benign airway strictures. Respiration 77:420–6. doi: 10.1159/000203364 CrossRefGoogle Scholar
  14. Eom J, Xu XG, De S, Shi C (2010) Predictive modeling of lung motion over the entire respiratory cycle using measured pressure-volume data, 4DCT images, and finite-element analysis. Med Phys 37:4389. doi: 10.1118/1.3455276 CrossRefGoogle Scholar
  15. Fernández-Bussy S, Majid A, Caviedes I et al (2011) Treatment of airway complications following lung transplantation. Arch Bronconeumol (English Ed) 47:128–133. doi: 10.1016/S1579-2129(11)70031-3 CrossRefGoogle Scholar
  16. Freitag L (2010) Airway stents. In: Interventional pulmonology. European Respiratory Society Journals Ltd, Sheffield, pp 190–217Google Scholar
  17. Fuerst B, Mansi T, Carnis F et al (2015) Patient-specific biomechanical model for the prediction of lung motion from 4-D CT images. IEEE Trans Med Imaging 34:599–607. doi: 10.1109/TMI.2014.2363611 CrossRefGoogle Scholar
  18. García a, Peña E, Martínez M a (2012) Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent. J Mech Behav Biomed Mater 10:166–175. doi: 10.1016/j.jmbbm.2012.02.006 CrossRefGoogle Scholar
  19. Gastaldi D, Morlacchi S, Nichetti R et al (2010) Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: Effects of stent positioning. Biomech Model Mechanobiol 9:551–561. doi: 10.1007/s10237-010-0196-8 CrossRefGoogle Scholar
  20. Gee MW, Reeps C, Eckstein HH, Wall WA (2009) Prestressing in finite deformation abdominal aortic aneurysm simulation. J Biomech 42:1732–1739. doi: 10.1016/j.jbiomech.2009.04.016 CrossRefGoogle Scholar
  21. Gildea TR, Downie G, Eapen G et al (2008) A prospective multicenter trial of a self-expanding hybrid stent in malignant airway obstruction. J Bronchol 15:221–224. doi: 10.1097/LBR.0b013e31818859b9 CrossRefGoogle Scholar
  22. Gökgöl C, Diehm N, Nezami FR, Büchler P (2015) Nitinol stent oversizing in patients undergoing popliteal artery revascularization: a finite element study. Ann Biomed Eng. doi: 10.1007/s10439-015-1358-8
  23. Hautmann H, Rieger J, Huber RM, Pfeifer KJ (1999) Elastic deformation properties of implanted endobronchial wire stents in benign and malignant bronchial disease: A radiographic in vivo evaluation. Cardiovasc Interv Radiol 22:103–108CrossRefGoogle Scholar
  24. Hoffman EA (1985) Effect of body orientation on regional lung expansion: a computed tomographic approach. J Appl Physiol 59:468–80Google Scholar
  25. Hu H-C, Liu Y-H, Wu Y-C et al (2011) Granulation tissue formation following Dumon airway stenting: the influence of stent diameter. Thorac Cardiovasc Surg 59:163–168CrossRefGoogle Scholar
  26. Hurewitz AN, Sidhu U, Bergofsky EH, Chanana AD (1984) How alterations in pleural pressure influence esophageal pressure. J Appl Physiol 56:1162–1169Google Scholar
  27. Ibrahim G, Rona A, Hainsworth SV (2015) Modeling the nonlinear motion of the rat central airways. J Biomech Eng 138:11007. doi: 10.1115/1.4032051 CrossRefGoogle Scholar
  28. Jeong BH, Um SW, Suh GY et al (2012) Results of interventional bronchoscopy in the management of postoperative tracheobronchial stenosis. J Thorac Cardiovasc Surg 144:217–222. doi: 10.1016/j.jtcvs.2012.03.077 CrossRefGoogle Scholar
  29. Kamm RD (1999) Airway wall mechanics. Annu Rev Biomed Eng 1:47–72. doi: 10.1146/annurev.bioeng.1.1.47 CrossRefGoogle Scholar
  30. Lai-Fook SJ (2004) Pleural mechanics and fluid exchange. Physiol Rev 84:385–410. doi: 10.1152/physrev.00026.2003 CrossRefGoogle Scholar
  31. Lee P, Kupeli E, Mehta AC (2010) Airway stents. Clin Chest Med 31:141–150. doi: 10.1016/j.ccm.2009.08.002 CrossRefGoogle Scholar
  32. Lu J, Zhou X, Raghavan ML (2007) Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J Biomech 40:693–696. doi: 10.1016/j.jbiomech.2006.01.015 CrossRefGoogle Scholar
  33. Malvè M, del Palomar AP, López-Villalobos JL et al (2010) FSI analysis of the coughing mechanism in a human trachea. Ann Biomed Eng 38:1556–1565. doi: 10.1007/s10439-010-9951-3 CrossRefGoogle Scholar
  34. Malvè M, Del Palomar AP, Chandra S et al (2011a) FSI analysis of a human trachea before and after prosthesis implantation. J Biomech Eng 133:71003. doi: 10.1115/1.4004315 CrossRefGoogle Scholar
  35. Malvè M, Pérez del Palomar a, Mena a et al (2011b) Numerical modeling of a human stented trachea under different stent designs. Int Commun Heat Mass Transf 38:855–862. doi: 10.1016/j.icheatmasstransfer.2011.04.012
  36. Malvè M, Pérez del Palomar a, Trabelsi O et al (2011c) Modeling of the fluid structure interaction of a human trachea under different ventilation conditions. Int Commun Heat Mass Transf 38:10–15. doi: 10.1016/j.icheatmasstransfer.2010.09.010 CrossRefGoogle Scholar
  37. Malvè M, Pérez del Palomar a, Chandra S et al (2011d) FSI Analysis of a healthy and a stenotic human trachea under impedance-based boundary conditions. J Biomech Eng 133:21001. doi: 10.1115/1.4003130 CrossRefGoogle Scholar
  38. Malvè M, Serrano C, Peña E et al (2014) Modelling the air mass transfer in a healthy and a stented rabbit trachea: CT-images, computer simulations and experimental study. Int Commun Heat Mass Transf 53:1–8. doi: 10.1016/j.icheatmasstransfer.2014.02.001 CrossRefGoogle Scholar
  39. Marchese R, Poidomani G, Paglino G et al (2015) Fully covered self-expandable metal stent in tracheobronchial disorders: clinical experience. Respiration 89:49–56. doi: 10.1159/000368614 CrossRefGoogle Scholar
  40. McClelland JR, Hawkes DJ, Schaeffter T, King AP (2013) Respiratory motion models: a review. Med Image Anal 17:19–42. doi: 10.1016/ CrossRefGoogle Scholar
  41. McCool FD (2006) Global physiology and pathophysiology of cough: ACCP evidence-based clinical practice guidelines. Chest 129:48S–53S. doi: 10.1378/chest.129.1_suppl.48S CrossRefGoogle Scholar
  42. McGrath DJ, O’Brien B, Bruzzi M, McHugh PE (2014) Nitinol stent design—understanding axial buckling. J Mech Behav Biomed Mater 40:252–263. doi: 10.1016/j.jmbbm.2014.08.029 CrossRefGoogle Scholar
  43. McGrath DJ, O’Brien B, Bruzzi M et al (2016) Evaluation of cover effects on bare stent mechanical response. J Mech Behav Biomed Mater 61:567–580. doi: 10.1016/j.jmbbm.2016.04.023 CrossRefGoogle Scholar
  44. Moreno F, Lyons HA (1961) Effect of body posture on lung volumes. J Appl Physiol 16:27–9Google Scholar
  45. Nestola MGC, Faggiano E, Vergara C et al (2017) Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses. Comput Methods Biomech Biomed Eng 20:171–181. doi: 10.1080/10255842.2016.1207171 CrossRefGoogle Scholar
  46. Ní Ghriallais R, Bruzzi M (2014) A computational analysis of the deformation of the femoropopliteal artery with stenting. J Biomech Eng 136:71003. doi: 10.1115/1.4027329 CrossRefGoogle Scholar
  47. Ost DE, Shah AM, Lei X et al (2012) Respiratory infections increase the risk of granulation tissue formation following airway stenting in patients with malignant airway obstruction. Chest 141:1473–81. doi: 10.1378/chest.11-2005 CrossRefGoogle Scholar
  48. Park J-H, Kim PH, Shin JH et al (2016) Removal of retrievable self-expandable metallic tracheobronchial stents: an 18-year experience in a single center. Cardiovasc Interv Radiol. doi: 10.1007/s00270-016-1420-4
  49. Petrini L, Trotta A, Dordoni E et al (2016) A computational approach for the prediction of fatigue behaviour in peripheral stents: application to a clinical case. Ann Biomed Eng 44:536–547. doi: 10.1007/s10439-015-1472-7 CrossRefGoogle Scholar
  50. Prasad A, Xiao N, Gong XY et al (2013) A computational framework for investigating the positional stability of aortic endografts. Biomech Model Mechanobiol 12:869–887. doi: 10.1007/s10237-012-0450-3 CrossRefGoogle Scholar
  51. Rausch SMK, Martin C, Bornemann PB et al (2011) Material model of lung parenchyma based on living precision-cut lung slice testing. J Mech Behav Biomed Mater 4:583–92. doi: 10.1016/j.jmbbm.2011.01.006 CrossRefGoogle Scholar
  52. Razi SS, Lebovics RS, Schwartz G et al (2010) Timely airway stenting improves survival in patients with malignant central airway obstruction. Ann Thorac Surg 90:1088–1093. doi: 10.1016/j.athoracsur.2010.06.093 CrossRefGoogle Scholar
  53. Saad CP, Murthy S, Krizmanich G, Mehta AC (2003) Self-expandable metallic airway stents and flexible bronchoscopy*. Chest 124:1993–1999. doi: 10.1378/chest.124.5.1993 CrossRefGoogle Scholar
  54. Scheerlinck JPY, Snibson KJ, Bowles VM, Sutton P (2008) Biomedical applications of sheep models: from asthma to vaccines. Trends Biotechnol 26:259–266. doi: 10.1016/j.tibtech.2008.02.002 CrossRefGoogle Scholar
  55. Schmäl F, Fegeler W, Terpe HJ et al (2003) Bacteria and granulation tissue associated with Montgomery T-tubes. Laryngoscope 113:1394–1400. doi: 10.1097/00005537-200308000-00024 CrossRefGoogle Scholar
  56. Si H, Gärtner K (2015) Meshing piecewise linear complexes by constrained delaunay tetrahedralizations. In: Proceedings of the 14th international meshing roundtable. Springer, Berlin, pp 147–163Google Scholar
  57. Stoeckel D, Pelton A, Duerig T (2004) Self-expanding nitinol stents: material and design considerations. Eur Radiol 14:292–301. doi: 10.1007/s00330-003-2022-5 CrossRefGoogle Scholar
  58. Tawhai MH, Nash MP, Lin C-L, Hoffman E a (2009) Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J Appl Physiol 107:912–920. doi: 10.1152/japplphysiol.00324.2009 CrossRefGoogle Scholar
  59. Tehrani JN, Yang Y, Werner R et al (2015) Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters. Phys Med Biol 60:8833–8849. doi: 10.1088/0031-9155/60/22/8833 CrossRefGoogle Scholar
  60. Thiebes AL, Kelly N, Sweeney CA et al (2016) PulmoStent: in vitro to in vivo evaluation of a tissue engineered endobronchial stent. Ann Biomed Eng. doi: 10.1007/s10439-016-1737-9
  61. Trabelsi O, Malve M, Mena Tobar A, Doblare M (2015) Simulation of swallowing dysfunction and mechanical ventilation after a Montgomery T-tube insertion. Comput Methods Biomech Biomed Eng 18:1596–1605. doi: 10.1080/10255842.2014.930448 CrossRefGoogle Scholar
  62. Trabelsi O, Pérez del Palomar A, Mena Tobar A et al (2011) FE simulation of human trachea swallowing movement before and after the implantation of an endoprothesis. Appl Math Model 35:4902–4912. doi: 10.1016/j.apm.2011.03.041 MathSciNetCrossRefzbMATHGoogle Scholar
  63. Villard P-F, Beuve M, Shariat B et al (2005) Simulation of lung behaviour with finite elements: influence of bio-mechanical parameters. In: Third international conference on medical information visualisation-biomedical visualisation. IEEE, pp 9–14Google Scholar
  64. Wall WA, Rabczuk T (2008) Fluid-structure interaction in lower airways of CT-based lung geometries. Int J Numer Methods Fluids 57:653–675. doi: 10.1002/fld.1763 MathSciNetCrossRefzbMATHGoogle Scholar
  65. Werner R, Ehrhardt J, Schmidt R, Handels H (2009) Patient-specific finite element modeling of respiratory lung motion using 4D CT image data. Med Phys 36:1500. doi: 10.1118/1.3101820 CrossRefGoogle Scholar
  66. West JB (2012) Respiratory physiology: the essentials. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  67. Yin Y, Choi J, Hoffman EA et al (2013) A multiscale MDCT image-based breathing lung model with time-varying regional ventilation. J Comput Phys 244:168–192. doi: 10.1016/ MathSciNetCrossRefGoogle Scholar
  68. Zeng YJ, Yager D, Fung YC (1987) Measurement of the mechanical properties of the human lung tissue. J Biomech Eng 109:169–174CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Donnacha J. McGrath
    • 1
  • Anja Lena Thiebes
    • 2
  • Christian G. Cornelissen
    • 2
    • 3
  • Mary B. O’Shea
    • 1
  • Barry O’Brien
    • 1
  • Stefan Jockenhoevel
    • 2
  • Mark Bruzzi
    • 1
  • Peter E. McHugh
    • 1
  1. 1.Biomechanics Research Centre (BMEC), Biomedical EngineeringCollege of Engineering and InformaticsGalwayIreland
  2. 2.Department of Biohybrid and Medical Textiles (BioTex) at AME-Helmholtz Institute for Biomedical Engineering, ITA-Institut für TextiltechnikRWTH Aachen University and at AMIBM Maastricht UniversityAachenGermany
  3. 3.Department for Internal Medicine – Section for Pneumology, Medical FacultyRWTH Aachen UniversityAachenGermany

Personalised recommendations