Biomechanics and Modeling in Mechanobiology

, Volume 16, Issue 4, pp 1447–1458 | Cite as

Numerical and experimental analysis of the transitional flow across a real stenosis

  • R. Agujetas
  • C. Ferrera
  • A. C. Marcos
  • J. P. Alejo
  • J. M. MontaneroEmail author
Original Paper


In this paper, we present a numerical study of the pulsatile transitional flow crossing a severe real stenosis located right in front of the bifurcation between the right subclavian and right common carotid arteries. The simulation allows one to determine relevant features of this subject-specific flow, such as the pressure waves in the right subclavian and right common carotid arteries. We explain the subclavian steal syndrome suffered by the patient in terms of the drastic pressure drop in the right subclavian artery. This pressure drop is caused by both the diverging part of the analyzed stenosis and the reverse flow in the bifurcation induced by another stenosis in the right internal carotid artery.


CFD Stenosis Subclavian steal syndrome 



Partial support from the Junta de Extremadura through Grant No. GR15014 (partially financed by FEDER funds) is gratefully acknowledged.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. Ahmed SA, Giddens DP (1983) Velocity measurements in steady flow through axisymmetric stenoses at moderate reynolds numbers. J Biomech 16:505–516CrossRefGoogle Scholar
  2. Ahmed SA, Giddens DP (1984) Pulsatile poststenotic flow studies with laser doppler anemometry. J Biomech 17:695–705CrossRefGoogle Scholar
  3. Alastruey J, Parker KH, Peiro J, Byrd SM, Sherwin SJ (2007) Modelling the circle of willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech 40:1794–1805CrossRefGoogle Scholar
  4. Ansys (2015) Ansys fluent 16.2. user’s guide. Ansys, CanonsburgGoogle Scholar
  5. Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114:1852–1866CrossRefGoogle Scholar
  6. Bluestein D, Gutierrez C, Londono M, Schoephoerster RT (1999) Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition. Ann Biomed Eng 27:763–773CrossRefGoogle Scholar
  7. Browne LD, Griffin P, Bashar K, Walsh SR, Kavanagh EG, Walsh MT (2015) In vivo validation of the in silico predicted pressure drop across an arteriovenous fistula. Ann Biomed Eng 43:1275–1286CrossRefGoogle Scholar
  8. Caballero AD, Laín S (2013) A review on computational fluid dynamics modelling in human thoracic aorta. Cardiovasc Eng Technol 4:103–130CrossRefGoogle Scholar
  9. Chien S (1970) Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168:977–979CrossRefGoogle Scholar
  10. David-Spence J, Ross-Naylor A (2016) Endarterectomy, stenting, or neither for asymptomatic carotid-artery stenosis. N Engl J Med 374:1087–1088CrossRefGoogle Scholar
  11. Deshpande MD, Giddens DP (1980) Turbulence measurements in a constricted tube. J Fluid Mech 97:65–89CrossRefGoogle Scholar
  12. Fedorov A et al (2012) 3d slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341CrossRefGoogle Scholar
  13. Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2002) Numerical treatment of defective boundary conditions for the Navier–Stokes equations. SIAM J Numer Anal 40:376–401MathSciNetCrossRefzbMATHGoogle Scholar
  14. Gårdhagen R, Lantz J, Carlsson F, Karlsson M (2010) Quantifying turbulent wall shear stress in a stenosed pipe using large Eddy simulation. J Biomech Eng 132:061,002CrossRefGoogle Scholar
  15. Gallo D, Santis GD, Negri F, Tresoldi D, Ponzini R, Massai D, Deriu MA, Segers P, Verhegghe B, Rizzo G, Morbiducci U (2012) On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: Implications for indicators of abnormal flow. Ann Biomed Eng 40:729–741CrossRefGoogle Scholar
  16. Ghalichi F, Deng X, Champlain A, Douville Y, King M, Guidoin R (1998) Low Reynolds number turbulence modeling of blood flow in arterial stenoses. Biorheology 35:281–294CrossRefGoogle Scholar
  17. Grinberg L, Karniadakis GE (2008) Outflow boundary conditions for arterial networks with multiple outlets. Ann Biomed Eng 36:1496–1514CrossRefGoogle Scholar
  18. Ibañez B, Badimon JJ, García MJ (2009) Diagnosis of atherosclerosis by imaging. Am J Med 122:S15–S25CrossRefGoogle Scholar
  19. Jahangiri M, Saghafian M, Sadeghi MR (2015) Numerical study of trubulent pulsatile blood flow through stensosed artery using fluid-solid interaction. Comput Math Methods Med 2015:515613Google Scholar
  20. Kleinstreuer C (2006) Biofluid dynamics: principles and selected applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  21. Ku DN (1997) Blood flow in arteries. Annu Rev Fluid Mech 29:399–434MathSciNetCrossRefGoogle Scholar
  22. Lee T, Liao W, Low H (2003) Numerical simulation of turbulent flow through series stenosis. Int J Numer Methods Fluids 42:717–740CrossRefzbMATHGoogle Scholar
  23. Li Z, Tan FPP, Soloperto G, Wood NB, Xu XY, Gillard JH (2015) Flow pattern analysis in a highly stenotic patient-specific carotid bifurcation model using a turbulence model. Comput Methods Biomech Biomed Eng 18:1099–1107CrossRefGoogle Scholar
  24. Menter F, Langtry R, Völker S (2006) Transition modelling for general purpose CFD codes. Flow Turbul Combust 77:277–303CrossRefzbMATHGoogle Scholar
  25. Murray CJ, Lopez AD (2013) Measuring the global burden of disease. N Engl J Med 369:448–457CrossRefGoogle Scholar
  26. Paul MC, Larman A (2009) Investigation of spiral blood flow in a model of arterial stenosis. Med Eng Phys 31:1195–1203CrossRefGoogle Scholar
  27. Paul MC, Mamun M, Roditi G (2009) Large-eddy simulation of pulsatile blood flow. Med Eng Phys 31:153–159CrossRefGoogle Scholar
  28. Ryval J, Straatman AG, Steinman DA (2004) Two-equation turbulence modeling of pulsatile flow in a stenosed tube. J Biomech Eng 126:625CrossRefGoogle Scholar
  29. Scotti A, Piomelli U (2002) Turbulence models in pulsating flows. AIAA 40:537–544CrossRefGoogle Scholar
  30. Sommer K, Bernat D, Schmidt R, Breit H, Schreiber LM (2015) Resting myocardial blood flow quantification using contrast-enhanced magnetic resonance imaging in the presence of stenosis: A computational fluid dynamics study. Med Phys 42:4375–4384CrossRefGoogle Scholar
  31. Stroud JS, Berger SA, Saloner D (2000) Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture. J Biomech 33:443–455CrossRefGoogle Scholar
  32. Tan F, Soloperto G, Bashford S, Wood NB, Thom S, Hughes A, Xu XY (2014) Pulsatile spiral blood flow through arterial stenosis. Comput Methods Biomech Biomed Eng 17:1727–1737CrossRefGoogle Scholar
  33. Tan FPP, Wood NB, Tabor G, Xu XY (2011) Comparison of LES of steady transitional flow in an idealized stenosed axisymmetric artery model with a RANS transitional model. J Biomech Eng 133:051001CrossRefGoogle Scholar
  34. Varghese SS, Frankel SH (2003) Numerical modeling of pulsatile turbulent flow in stenotic vessels. J Biomech Eng 125:445–460CrossRefGoogle Scholar
  35. Varghese SS, Frankel SH, Fischer PF (2007a) Direct numerical simulation of stenotic flows. Part 1. Steady flow. J Fluid Mech 582:253Google Scholar
  36. Varghese SS, Frankel SH, Fischer PF (2007b) Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow. J Fluid Mech 582:281MathSciNetCrossRefzbMATHGoogle Scholar
  37. Varghese SS, Frankel SH, Fischer PF (2008) Modeling transition to turbulence in eccentric stenotic flows. J Biomech Eng 130:014503CrossRefGoogle Scholar
  38. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics. Pearson Education Limited, LondonGoogle Scholar
  39. Wilcox DC (2006) Turbulence modeling for CFD. DCW Industries, FlintridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • R. Agujetas
    • 1
  • C. Ferrera
    • 1
  • A. C. Marcos
    • 2
  • J. P. Alejo
    • 3
  • J. M. Montanero
    • 1
    Email author
  1. 1.Depto. de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx)Universidad de ExtremaduraBadajozSpain
  2. 2.Depto. de Expresión GráficaUniversidad de ExtremaduraBadajozSpain
  3. 3.Servicio de RadiologíaHospital Infanta CristinaBadajozSpain

Personalised recommendations