Biomechanics and Modeling in Mechanobiology

, Volume 16, Issue 4, pp 1413–1423 | Cite as

Spatial patterns and frequency distributions of regional deformation in the healthy human lung

  • Daniel E. Hurtado
  • Nicolás Villarroel
  • Carlos Andrade
  • Jaime Retamal
  • Guillermo Bugedo
  • Alejandro Bruhn
Original Paper

Abstract

Understanding regional deformation in the lung has long attracted the medical community, as parenchymal deformation plays a key role in respiratory physiology. Recent advances in image registration make it possible to noninvasively study regional deformation, showing that volumetric deformation in healthy lungs follows complex spatial patterns not necessarily shared by all subjects, and that deformation can be highly anisotropic. In this work, we systematically study the regional deformation in the lungs of eleven human subjects by means of in vivo image-based biomechanical analysis. Regional deformation is quantified in terms of 3D maps of the invariants of the right stretch tensor, which are related to regional changes in length, surface and volume. Based on the histograms of individual lungs, we show that log-normal distributions adequately represent the frequency distribution of deformation invariants in the lung, which naturally motivates the normalization of the invariant fields in terms of the log-normal score. Normalized maps of deformation invariants allow for a direct intersubject comparison, as they display spatial patterns of deformation in a range that is common to all subjects. For the population studied, we find that lungs in supine position display a marked gradient along the gravitational direction not only for volumetric but also for length and surface regional deformation, highlighting the role of gravity in the regional deformation of normal lungs under spontaneous breathing.

Keywords

Lung mechanics Biomechanical analysis Image registration Regional deformation Lung physiology 

Supplementary material

10237_2017_895_MOESM1_ESM.pdf (9 mb)
Supplementary material 1 (pdf 9208 KB)
10237_2017_895_MOESM2_ESM.pdf (57 kb)
Supplementary material 2 (pdf 57 KB)
10237_2017_895_MOESM3_ESM.pdf (5.8 mb)
Supplementary material 3 (pdf 5956 KB)

References

  1. Amelon RE, Cao K, Ding K, Christensen GE, Reinhardt JM, Raghavan ML (2011) Three-dimensional characterization of regional lung deformation. J Biomech 44(13):2489–2495CrossRefGoogle Scholar
  2. Amelon RE, Cao K, Reinhardt JM, Christensen GE, Raghavan ML (2014) A measure for characterizing sliding on lung boundaries. Ann Biomed Eng 42(3):642–650CrossRefGoogle Scholar
  3. Bodduluri S, Newell JD, Hoffman EA, Reinhardt JM (2013) Registration based lung mechanical analysis of chronic obstructive pulmonary disease (COPD) using a supervised machine learning framework. Acad Radiol 20(5):527–536CrossRefGoogle Scholar
  4. Cao K, Christensen GE, Ding K, Du K, Raghavan ML, Amelon RE, Baker KM, Hoffman Ea, Reinhardt JM (2012) Tracking regional tissue volume and function change in lung using image registration. Int J Biomed Imaging 2012(2):1–14Google Scholar
  5. CGAL (2016) Computational geometry algorithms library. http://www.cgal.org
  6. Choi S, Hoffman EA, Wenzel SE, Castro M, Fain SB, Jarjour NN, Schiebler ML, Chen K, Lin C-L (2015) Quantitative assessment of multiscale structural and functional alterations in asthmatic populations. J Appl Physiol 118(10):1286–1298CrossRefGoogle Scholar
  7. Choi S, Hoffman Ea, Wenzel SE, Castro M, Lin C-L (2014) Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung volume variations in a multi-center asthmatic study. J Appl Physiol 117:593–603CrossRefGoogle Scholar
  8. Choi S, Hoffman EA, Wenzel SE, Tawhai MH, Yin Y, Castro M, Lin CL (2013) Registration-based assessment of regional lung function via volumetric CT images of normal subjects versus severe asthmatics. J Appl Physiol 115(5):730–742CrossRefGoogle Scholar
  9. Christensen GE, Song JH, Lu W, El Naqa I, Low Da (2007) Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry. Med Phys 34:2155–2163CrossRefGoogle Scholar
  10. Eskandari M, Kuschner WG, Kuhl E (2015) Patient-specific airway wall remodeling in chronic lung disease. Ann Biomed Eng 43(10):2538–2551CrossRefGoogle Scholar
  11. Freed AD, Einstein DR (2012) Hypo-elastic model for lung parenchyma. Biomech Model Mechanobiol 11(3–4):557–573CrossRefGoogle Scholar
  12. Hoppin FG, Lee GC, Dawson SV (1975) Properties of lung parenchma in distorsion. J Appl Physiol 39(5):742–751Google Scholar
  13. Hurtado DE, Castro S, Gizzi A (2016a) Computational modeling of non-linear diffusion in cardiac electrophysiology: a novel porous-medium approach. Comput Methods Appl Mech Eng 300:70–83MathSciNetCrossRefGoogle Scholar
  14. Hurtado DE, Henao D (2014) Gradient flows and variational principles for cardiac electrophysiology: toward efficient and robust numerical simulations of the electrical activity of the heart. Comput Methods Appl Mech Eng 273:238–254MathSciNetCrossRefMATHGoogle Scholar
  15. Hurtado DE, Villarroel N, Retamal J, Bugedo G, Bruhn AR (2016b) Improving the accuracy of registration-based biomechanical analysis: a finite-element approach to lung regional strain quantification. IEEE Trans Med Imaging 35(2):580–588CrossRefGoogle Scholar
  16. Jahani N, Choi S, Choi J, Iyer K, Hoffman EA, Lin C-L, Amelon R, Cao K, Ding K, Christensen GE, Reinhardt J, Raghavan M, Aznar M, Persson G, Kofoed I, Nygaard D, Korreman S, Bauman G, Eichinger M, Boldea V, Sharp G, Jiang S, Sarrut D, Choi S, Wenzel S, Castro M, Lin C, Tawhai M, Yin Y, Fain S, Jarjour N, Schiebler M, Chen K, Song J, Lu W, Naqa I, Low D, Bayouth J, Buatti J, Escolar J, Escolar A, Flohr T, Stierstorfer K, Raupach R, Ulzheimer S, Bruder H, Fuld M, Grout R, Guo J, Morgan J, Hankinson J, Odencrantz J, Fedan K, Ireland R, Bragg C, McJury M, Woodhouse N, Fichele S, van Beek E, Wild J, Hatton M, Iyer K, Zamba G, Jahani N, Miyawaki S, Newell J, Allmendinger T, Sieren J, Chan K, Noel C, Parikh P, Petersson J, Sánchez-Crespo A, Rohdin M, Montmerle S, Nyrén S, Jacobsson H, Larsson S, Lindahl S, Linnarsson D, Glenny R, Mure M, Bodas S, Rietzel E, Pan T, Chen G, Stocks J, Quanjer P, Voorhees A, An J, Berger K, Goldring R, Chen Q, White B, Zhao T, Lamb J, Wuenschel S, Bradley J, Low D, Wu D, Yang D, Deasy J, Hope A, Choi J, Zhang J, Ma J, Zhou S, Hubbs J, Wong T, Folz R, Evans E, Jaszczak R, Clough R, Marks L (2015) Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing. J Appl Physiol 119(10):1064–1074CrossRefGoogle Scholar
  17. Jahani N, Yin Y, Hoffman Ea, Lin CL (2014) Assessment of regional non-linear tissue deformation and air volume change of human lungs via image registration. J Biomech 47(7):1626–1633CrossRefGoogle Scholar
  18. Kaczka DW, Cao K, Christensen GE, Bates JHT, Simon Ba (2011) Analysis of regional mechanics in canine lung injury using forced oscillations and 3D image registration. Ann Biomed Eng 39(3):1112–1124CrossRefGoogle Scholar
  19. Lynch D, Newell JD (2009) Quantitative imaging of COPD. J Thorac Imaging 24(3):189–194CrossRefGoogle Scholar
  20. Mercer RR, Capo JD (1990) Spatial distribution of collagen and elastin fibers in the lungs. J Appl Physiol 69(2):756–765Google Scholar
  21. Milic-Emili J, Henderson JAM, Dolovich MB, Trop D, Kaneko K (1966) Regional distribution of inspired gas in the lung. J Appl Physiol 21(3):749–759Google Scholar
  22. Modat M, Mcclelland J, Ourselin S (2010a) Lung registration using the NiftyReg package. In: Medical image analysis for the clinic: a grand challenge. In: Workshop proceedings from MICCAI, pp 33–42Google Scholar
  23. Modat M, Ridgway GR, Taylor Za, Lehmann M, Barnes J, Hawkes DJ, Fox NC, Ourselin S (2010b) Fast free-form deformation using graphics processing units. Comput Methods Programs Biomed 98(3):278–284CrossRefGoogle Scholar
  24. Ogden RW (1984) Non-linear elastic deformations. Dover Publications Inc., New YorkMATHGoogle Scholar
  25. Pace DF, Aylward SR, Niethammer M (2013) A locally adaptive regularization based on anisotropic diffusion for deformable image registration of sliding organs. IEEE Trans Med Imaging 32(11):2114–2126CrossRefGoogle Scholar
  26. Paula LFSDC, Wellman TJ, Winkler T, Spieth PM, Güldner A, Venegas JG, Gama de Abreu M, Carvalho AR, Vidal Melo MF (2016) Regional tidal lung strain in mechanically ventilated normal lungs. J Appl Physiol 21(6):1335–1347Google Scholar
  27. Rausch SMK, Haberthür D, Stampanoni M, Schittny JC, Wall Wa (2011a) Local strain distribution in real three-dimensional alveolar geometries. Ann Biomed Eng 39(11):2835–2843CrossRefGoogle Scholar
  28. Rausch SMK, Martin C, Bornemann PB, Uhlig S, Wall WA (2011b) Material model of lung parenchyma based on living precision-cut lung slice testing. J Mech Behav Biomed Mater 4(4):583–592CrossRefGoogle Scholar
  29. Reinhardt JM, Ding K, Cao K, Christensen GE, Hoffman EA, Bodas SV (2008) Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation. Med Image Anal 12(6):752–763CrossRefGoogle Scholar
  30. Sotelo J, Urbina J, Valverde I, Tejos C, Irarrázaval P, Andia M, Uribe S, Hurtado DE (2016) 3D quantification of wall shear stress and oscillatory shear index using a finite-element method in 3D CINE PC-MRI data of the thoracic aorta. IEEE Trans Med Imaging 35(6):1475–1487CrossRefGoogle Scholar
  31. Sotelo JA, Urbina J, Valverde I, Tejos C, Irarrázaval P, Hurtado DE, Uribe S (2015) Quantification of wall shear stress using a finite-element method in multidimensional phase-contrast MR data of the thoracic aorta. J Biomech 48(10):1817–1827CrossRefGoogle Scholar
  32. Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imaging 32(7):1153–1190CrossRefGoogle Scholar
  33. Spaggiari E, Zompatori M, Verduri A, Chetta A, Bna C, Ormittu F, Sverzellati N, Rabaiotti E (2005) Early smoking-induced lung lesions in asymptomatic subjects. Correlations between high resolution dynamic CT and pulmonary function testing. La Radiol Med 109:27–39Google Scholar
  34. Truesdell C, Noll W (1965) The nonlinear field theories of mechanics. In: Flugge S (ed) Handbuch der physik III/3. Springer, BerlinGoogle Scholar
  35. Wellman TJ, Winkler T, Costa EL, Musch G, Harris RS, Zheng H, Venegas JG, Vidal Melo MF (2010) Effect of local tidal lung strain on inflammation in normal and lipopolysaccharide-exposed sheep. Crit Care Med 42(7):e491–e500CrossRefGoogle Scholar
  36. West JB (2011) Respiratory physiology. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  37. West JB (2012) Pulmonary pathophysiology. The essentials. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  38. Yin Y, Hoffman EA, Lin C-L (2010) Lung lobar slippage assessed with the aid of image registration. Med Image Comput Comput Assist Interv MICCAI.. Int Conf Med Image Comput Comput Assist Interv 13(Pt 2):578–585Google Scholar
  39. Yushkevich PA, Piven J, Cody Hazlett H, Gimpel Smith R, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Structural and Geotechnical Engineering, School of EngineeringPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Departamento de Medicina Intensiva, Facultad de MedicinaPontificia Universidad Católica de ChileSantiagoChile
  4. 4.Hedenstierna Laboratory, Department of Surgical ScienceUppsala UniversityUppsalaSweden

Personalised recommendations