Biomechanics and Modeling in Mechanobiology

, Volume 16, Issue 4, pp 1329–1348 | Cite as

Predicting tenocyte expression profiles and average molecular concentrations in Achilles tendon ECM from tissue strain and fiber damage

  • Arash Mehdizadeh
  • Bruce S. Gardiner
  • Michael Lavagnino
  • David W. Smith
Original Paper


In this study, we propose a method for quantitative prediction of changes in concentrations of a number of key signaling, structural and effector molecules within the extracellular matrix of tendon. To achieve this, we introduce the notion of elementary cell responses (ECRs). An ECR defines a normal reference secretion profile of a molecule by a tenocyte in response to the tenocyte’s local strain. ECRs are then coupled with a model for mechanical damage of tendon collagen fibers at different straining conditions of tendon and then scaled up to the tendon tissue level for comparison with experimental observations. Specifically, our model predicts relative changes in ECM concentrations of transforming growth factor beta, interleukin 1 beta, collagen type I, glycosaminoglycan, matrix metalloproteinase 1 and a disintegrin and metalloproteinase with thrombospondin motifs 5, with respect to tendon straining conditions that are consistent with the observations in the literature. In good agreement with a number of in vivo and in vitro observations, the model provides a logical and parsimonious explanation for how excessive mechanical loading of tendon can lead to under-stimulation of tenocytes and a degenerative tissue profile, which may well have bearing on a better understanding of tendon homeostasis and the origin of some tendinopathies.


Tendon extracellular matrix Strain Fiber damage TGF-\(\upbeta \) IL-1 Collagen GAG MMP ADAMTS 



This work has been funded by Australian Research Council Grant ARCLP 110100581.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alon U (2006) An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, Boca Raton, FLMATHGoogle Scholar
  2. Andarawis-Puri N, Flatow EL, Soslowsky LJ (2015) Tendon basic science: development, repair, regeneration, and healing. J Orthop Res 33:780–784CrossRefGoogle Scholar
  3. Andarawis-Puri N, Sereysky JB, Sun HB, Jepsen KJ, Flatow EL (2012) Molecular response of the patellar tendon to fatigue loading explained in the context of the initial induced damage and number of fatigue loading cycles. J Orthop Res 30:1327–1334CrossRefGoogle Scholar
  4. Archambault JM, Elfervig-Wall MK, Tsuzaki M, Herzog W, Banes AJ (2002) Rabbit tendon cells produce MMP-3 in response to fluid flow without significant calcium transients. J Biomech 35:303–309. doi: 10.1016/S0021-9290(01)00217-2 CrossRefGoogle Scholar
  5. Arnoczky SP, Lavagnino M, Egerbacher M (2007) The mechanobiological aetiopathogenesis of tendinopathy: is it the over-stimulation or the under-stimulation of tendon cells? Int J Exp Patho 88:217–226CrossRefGoogle Scholar
  6. Arnoczky SP, Lavagnino M, Egerbacher M, Caballero O, Gardner K, Shender MA (2008) Loss of homeostatic strain alters mechanostat “set point” of tendon cells in vitro. Clin Orthop Relat Res 466:1583–1591CrossRefGoogle Scholar
  7. Arnoczky SP, Lavagnino M, Whallon JH, Hoonjan A (2002) In situ cell nucleus deformation in tendons under tensile load; a morphological analysis using confocal laser microscopy. J Orthop Res 20:29–35. doi: 10.1016/S0736-0266(01)00080-8 CrossRefGoogle Scholar
  8. Arnoczky SP, Tian T, Lavagnino M, Gardner K (2004) Ex vivo static tensile loading inhibits MMP 1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism. J Orthop Res 22:328–333CrossRefGoogle Scholar
  9. Baugé C, Cauvard O, Leclercq S, Galéra P, Boumédiene K (2011) Modulation of transforming growth factor beta signalling pathway genes by transforming growth factor beta in human osteoarthritic chondrocytes: involvement of Sp1 in both early and late response cells to transforming growth factor beta. Arthritis Res Ther 13:R23Google Scholar
  10. Bell R et al (2013) ADAMTS5 is required for biomechanically-stimulated healing of murine tendinopathy. J Orthop Res 31:1540–1548. doi: 10.1002/jor.22398 CrossRefGoogle Scholar
  11. Benjamin M, Ralphs J (1998) Fibrocartilage in tendons and ligaments–an adaptation to compressive load. J Anat 193:481–494CrossRefGoogle Scholar
  12. Bontempi M (2009) Probabilistic model of ligaments and tendons: quasistatic linear stretching. Phys Rev E 79:030903CrossRefGoogle Scholar
  13. Butler DL, Grood ES, Noyes FR, Zernicke RF, Brackett K (1984) Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J Biomech 17:579–596CrossRefGoogle Scholar
  14. Castagna A, Cesari E, Gigante A, Conti M, Garofalo R (2013) Metalloproteases and their inhibitors are altered in both torn and intact rotator cuff tendons. Musculoskelet Surg 97:39–47CrossRefGoogle Scholar
  15. Chang J, Most D, Stelnicki E, Siebert JW, Longaker MT, Hui K, Lineaweaver WC (1997) Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: evidence for dual mechanisms of repair. Plast Reconstr Surg 100:937–944CrossRefGoogle Scholar
  16. Chard MD, Cawston TE, Riley GP, Gresham GA, Hazleman BL (1994) Rotator cuff degeneration and lateral epicondylitis: a comparative histological study. Ann Rheum Dis 53:30–34CrossRefGoogle Scholar
  17. Chuen FS, Chuk CY, Ping WY, Nar WW, Kim HL, Ming CK (2004) Immunohistochemical characterization of cells in adult human patellar tendons. J Histochem Cytochem 52:1151–1157. doi: 10.1369/jhc.3A6232.2004 CrossRefGoogle Scholar
  18. Clegg PD, Strassburg S, Smith RK (2007) Cell phenotypic variation in normal and damaged tendons. Int J Exp Patho 88:227–235CrossRefGoogle Scholar
  19. Cook JL, Purdam C (2012) Is compressive load a factor in the development of tendinopathy? Br J Sports Med 46:163–168CrossRefGoogle Scholar
  20. Cook JL, Purdam CR (2009) Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med 43:409–416. doi: 10.1136/bjsm.2008.051193 CrossRefGoogle Scholar
  21. Corps AN, Jones GC, Harrall RL, Curry VA, Hazleman BL, Riley GP (2008) The regulation of aggrecanase ADAMTS-4 expression in human Achilles tendon and tendon-derived cells. Matrix Biol 27:393–401. doi: 10.1016/j.matbio.2008.02.002 CrossRefGoogle Scholar
  22. Corps AN, Robinson AH, Harrall RL, Avery NC, Curry VA, Hazleman BL, Riley GP (2012) Changes in matrix protein biochemistry and the expression of mRNA encoding matrix proteins and metalloproteinases in posterior tibialis tendinopathy. Ann Rheum Dis 71:746–752. doi: 10.1136/annrheumdis-2011-200391 CrossRefGoogle Scholar
  23. Corps AN, Robinson AHN, Movin T, Costa ML, Hazleman BL, Riley GP (2006) Increased expression of aggrecan and biglycan mRNA in Achilles tendinopathy. Rheumatol 45:291–294CrossRefGoogle Scholar
  24. Egerbacher M, Arnoczky SP, Caballero O, Lavagnino M, Gardner KL (2008) Loss of homeostatic tension induces apoptosis in tendon cells: an in vitro study. Clin Orthop Relat Res 466:1562–1568CrossRefGoogle Scholar
  25. Eliasson P, Andersson T, Aspenberg P (2009) Rat Achilles tendon healing: mechanical loading and gene expression. J Appl Physiol 107:399–407CrossRefGoogle Scholar
  26. Eppell SJ, Smith BN, Kahn H, Ballarini R (2006) Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J R Soc Interface 3:117–121. doi: 10.1098/rsif.2005.0100 CrossRefGoogle Scholar
  27. Fang F, Lake SP (2015) Multiscale strain analysis of tendon subjected to shear and compression demonstrates strain attenuation, fiber sliding, and reorganization. J Orthop Res 33:1704–1712. doi: 10.1002/jor.22955 CrossRefGoogle Scholar
  28. Fenwick SA, Curry V, Harrall RL, Hazleman BL, Hackney R, Riley GP (2001) Expression of transforming growth factor-beta isoforms and their receptors in chronic tendinosis. J Anat 199:231–240CrossRefGoogle Scholar
  29. Finkelstein M (2008) Failure rate modelling for reliability and risk. Springer Science & Business Media, BerlinMATHGoogle Scholar
  30. Flynn BP, Tilburey GE, Ruberti JW (2013) Highly sensitive single-fibril erosion assay demonstrates mechanochemical switch in native collagen fibrils. Biomech Model Mechanobiol 12:291–300CrossRefGoogle Scholar
  31. Fong KD et al (2005) Microarray analysis of mechanical shear effects on flexor tendon cells. Plast Reconstr Surg 116:1393–1404. doi: 10.1097/01.prs.0000182345.86453.4f CrossRefGoogle Scholar
  32. Fu SC, Wang W, Pau HM, Wong YP, Chan KM, Rolf CG (2002) Increased expression of transforming growth factor-[beta] 1 in patellar tendinosis. Clin orthop Relat Res 400:174–183CrossRefGoogle Scholar
  33. Fung DT et al (2010) Early response to tendon fatigue damage accumulation in a novel in vivo model. J Biomech 43:274–279CrossRefGoogle Scholar
  34. Fung DT et al (2009) Subrupture tendon fatigue damage. J Orthop Res 27:264–273CrossRefGoogle Scholar
  35. Gardner K, Arnoczky SP, Caballero O, Lavagnino M (2008) The effect of stress-deprivation and cyclic loading on the TIMP/MMP ratio in tendon cells: an in vitro experimental study. Disabil Rehabil 30:1523–1529. doi: 10.1080/09638280701785395 CrossRefGoogle Scholar
  36. Gardner K, Lavagnino M, Egerbacher M, Arnoczky SP (2012) Re-establishment of cytoskeletal tensional homeostasis in lax tendons occurs through an actin-mediated cellular contraction of the extracellular matrix. J Orthop Res 30:1695–1701CrossRefGoogle Scholar
  37. Gendron C et al (2007) Proteolytic activities of human ADAMTS-5 comparative studies with ADAMTS-4. J Biol Chem 282:18294–18306CrossRefGoogle Scholar
  38. Gotoh M, Hamada K, Yamakawa H, Tomonaga A, Inoue A, Fukuda H (1997) Significance of granulation tissue in torn supraspinatus insertions: an immunohistochemical study with antibodies against interleukin-1 beta, cathepsin D, and matrix metalloprotease-1. J Orthop Res 15:33–39. doi: 10.1002/jor.1100150106 CrossRefGoogle Scholar
  39. Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P (2008) The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol 22:633–648. doi: 10.1111/j.1472-8206.2008.00633.x CrossRefGoogle Scholar
  40. Han WM, Heo S-J, Driscoll TP, Smith LJ, Mauck RL, Elliott DM (2013) Macro-to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific. Biophys J 105:807–817CrossRefGoogle Scholar
  41. Hashemi J, Chandrashekar N, Slauterbeck J (2005) The mechanical properties of the human patellar tendon are correlated to its mass density and are independent of sex. Clin Biomech 20:645–652. doi: 10.1016/j.clinbiomech.2005.02.008 CrossRefGoogle Scholar
  42. Heinemeier K, Langberg H, Olesen JL, Kjaer M (2003) Role of TGF-beta1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue. J Appl Physiol 95:2390–2397. doi: 10.1152/japplphysiol.00403.2003 CrossRefGoogle Scholar
  43. Heinemeier KM et al (2012) Uphill running improves rat Achilles tendon tissue mechanical properties and alters gene expression without inducing pathological changes. J Appl Physiol 113:827–836. doi: 10.1152/japplphysiol.00401.2012 CrossRefGoogle Scholar
  44. Hess GW (2010) Achilles tendon rupture: a review of etiology, population, anatomy, risk factors, and injury prevention. Foot Ankle Spec 3:29–32. doi: 10.1177/1938640009355191 CrossRefGoogle Scholar
  45. Hwang J, San BH, Turner NJ, White LJ, Faulk DM, Badylak SF, Li Y, Yu SM (2017) Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide. Acta Biomater. doi: 10.1016/j.actbio.2017.01.079 Google Scholar
  46. Ingalls BP (2013) Mathematical modeling in systems biology: an introduction. MIT press, CambridgeMATHGoogle Scholar
  47. Ishikawa M, Komi PV, Grey MJ, Lepola V, Bruggemann G-P (2005) Muscle-tendon interaction and elastic energy usage in human walking. J Appl Physiol 99:603–608CrossRefGoogle Scholar
  48. Jacobsen E, Dart AJ, Mondori T, Horadogoda N, Jeffcott LB, Little CB, Smith MM (2015) Focal experimental injury Leads to widespread gene expression and histologic changes in equine flexor tendons. PloS ONE 10Google Scholar
  49. Jones ER, Jones GC, Legerlotz K, Riley GP (2013) Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGF beta. Biochim Biophys Acta 1833:2596–2607. doi: 10.1016/j.bbamcr.2013.06.019 CrossRefGoogle Scholar
  50. Jones GC et al (2006) Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human achilles tendon. Arthritis Rheum 54:832–842. doi: 10.1002/art.21672 CrossRefGoogle Scholar
  51. Józsa LG, Kannus P (1997) Human tendons: anatomy, physiology, and pathology. Human Kinetics Champaign, ChampaignGoogle Scholar
  52. Juneja SC, Veillette C (2013) Defects in tendon, ligament, and enthesis in response to genetic alterations in key proteoglycans and glycoproteins: a review. Arthritis 2013:154812. doi: 10.1155/2013/154812 CrossRefGoogle Scholar
  53. Kannus P (2000) Structure of the tendon connective tissue. Scand J Med Sci Sports 10:312–320CrossRefGoogle Scholar
  54. Ker RF, Alexander RM, Bennett MB (1988) Why are mammalian tendons so thick? J Zool 216:309–324. doi: 10.1111/j.1469-7998.1988.tb02432.x CrossRefGoogle Scholar
  55. Killian ML, Cavinatto L, Galatz LM, Thomopoulos S (2012) The role of mechanobiology in tendon healing. J Shoulder Elb Surg 21:228–237. doi: 10.1016/j.jse.2011.11.002 CrossRefGoogle Scholar
  56. Kim S-G, Akaike T, Sasagaw T, Atomi Y, Kurosawa H (2002) Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Struct Funct 27:139–144CrossRefGoogle Scholar
  57. Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698. doi: 10.1152/physrev.00031.2003 CrossRefGoogle Scholar
  58. Klein TJ, Chaudhry M, Bae WC, Sah RL (2007) Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage. J Biomech 40:182–190CrossRefGoogle Scholar
  59. Klipp E, Liebermeister W, Wierling C, Kowald A, Herwig R (2016) Systems biology: a textbook. Wiley, HobokenGoogle Scholar
  60. Kokebie R, Aggarwal R, Lidder S, Hakimiyan AA, Rueger DC, Block JA, Chubinskaya S (2011) The role of synovial fluid markers of catabolism and anabolism in osteoarthritis, rheumatoid arthritis and asymptomatic organ donors. Arthritis Res Ther 13:R50CrossRefGoogle Scholar
  61. Kongsgaard M, Aagaard P, Kjaer M, Magnusson SP (2005) Structural Achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients. J Appl Physiol 99:1965–1971CrossRefGoogle Scholar
  62. Kujala UM, Sarna S, Kaprio J (2005) Cumulative incidence of achilles tendon rupture and tendinopathy in male former elite athletes. Clin J Sport Med 15:133–135CrossRefGoogle Scholar
  63. Lambert CA, Lapiere CM, Nusgens BV (1998) An interleukin-1 loop is induced in human skin fibroblasts upon stress relaxation in a three-dimensional collagen gel but is not involved in the up-regulation of matrix metalloproteinase 1. J Biol Chem 273:23143–23149CrossRefGoogle Scholar
  64. Langberg H, Rosendal L, Kjaer M (2001) Training-induced changes in peritendinous type I collagen turnover determined by microdialysis in humans. J Physiol 534:297–302CrossRefGoogle Scholar
  65. Lauffenburger DA, Linderman JJ (1993) Receptors: models for binding, trafficking, and signaling. Oxford University Press, New YorkGoogle Scholar
  66. Lavagnino M, Arnoczky SP, Caballero O, Robertson EM, Nashi SM (2006a) In vitro stress-deprivation alters the mechanostat set point of tendon cells. Trans Orthop Res Soc 31:329Google Scholar
  67. Lavagnino M, Arnoczky SP, Egerbacher M, Gardner KL, Burns ME (2006b) Isolated fibrillar damage in tendons stimulates local collagenase mRNA expression and protein synthesis. J Biomech 39:2355–2362CrossRefGoogle Scholar
  68. Lavagnino M, Arnoczky SP, Kepich E, Caballero O, Haut RC (2008) A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading. Biomech Model Mechanobiol 7:405–416. doi: 10.1007/s10237-007-0104-z CrossRefGoogle Scholar
  69. Lavagnino M, Wall ME, Little D, Banes AJ, Guilak F, Arnoczky SP (2015) Tendon mechanobiology: current knowledge and future research opportunities. J Orthop Res 33:813–822CrossRefGoogle Scholar
  70. Legerlotz K, Dorn J, Richter J, Rausch M, Leupin O (2014) Age-dependent regulation of tendon crimp structure, cell length and gap width with strain. Acta Biomater 10:4447–4455CrossRefGoogle Scholar
  71. Lichtwark GA, Wilson AM (2005) In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J Exp Biol 208:4715–4725. doi: 10.1242/jeb.01950
  72. Lichtwark GA, Wilson A (2006) Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. J Exp Biol 209:4379–4388CrossRefGoogle Scholar
  73. Maeda T et al (2011) Conversion of mechanical force into TGF-beta-mediated biochemical signals. Curr Biol 21:933–941. doi: 10.1016/j.cub.2011.04.007 CrossRefGoogle Scholar
  74. Magnusson SP, Langberg H, Kjaer M (2010) The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol 6:262–268. doi: 10.1038/nrrheum.2010.43 CrossRefGoogle Scholar
  75. Magnusson SP, Narici MV, Maganaris CN, Kjaer M (2008) Human tendon behaviour and adaptation, in vivo. J Physiol 586:71–81CrossRefGoogle Scholar
  76. Maly IV (2009) Systems biology. Humana Press, New York, Methods in molecular biologyCrossRefGoogle Scholar
  77. Markowitz J, Herr H (2016) Human leg model predicts muscle forces states, and energetics during Walking. PLoS Comput Biol 12:e1004912. doi: 10.1371/journal.pcbi.1004912 CrossRefGoogle Scholar
  78. Matuszewski PE, Chen Y-L, Szczesny SE, Lake SP, Elliott DM, Soslowsky LJ, Dodge GR (2012) Regional variation in human supraspinatus tendon proteoglycans: decorin, biglycan, and aggrecan. Connect Tissue Res 53:343–348CrossRefGoogle Scholar
  79. McNulty AL, Rothfusz NE, Leddy HA, Guilak F (2013) Synovial fluid concentrations and relative potency of interleukin-1 alpha and beta in cartilage and meniscus degradation. J Orthop Res 31:1039–1045. doi: 10.1002/jor.22334 CrossRefGoogle Scholar
  80. Nagase H, Woessner JF (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494CrossRefGoogle Scholar
  81. Nakatani T, Marui T, Hitora T, Doita M, Nishida K, Kurosaka M (2002) Mechanical stretching force promotes collagen synthesis by cultured cells from human ligamentum flavum via transforming growth factor-\(\upbeta \)1. J Orthop Res 20:1380–1386CrossRefGoogle Scholar
  82. Parkinson J, Samiric T, Ilic MZ, Cook J, Feller JA, Handley CJ (2010) Change in proteoglycan metabolism is a characteristic of human patellar tendinopathy. Arthritis Rheum 62:3028–3035CrossRefGoogle Scholar
  83. Pivonka P et al (2008) Model structure and control of bone remodeling: a theoretical study. Bone 43:249–263CrossRefGoogle Scholar
  84. Provenzano PP, Alejandro-Osorio AL, Valhmu WB, Jensen KT, Vanderby R Jr (2005) Intrinsic fibroblast-mediated remodeling of damaged collagenous matrices in vivo. Matrix Biol 23:543–555. doi: 10.1016/j.matbio.2004.09.008 CrossRefGoogle Scholar
  85. Qi J, Chi L, Bynum D, Banes AJ (2011) Gap junctions in IL-\(1\upbeta \)-mediated cell survival response to strain. J Appl Physiol 110:1425–1431CrossRefGoogle Scholar
  86. Riggin CN, Sarver JJ, Freedman BR, Thomas SJ, Soslowsky LJ (2014) Analysis of collagen organization in mouse Achilles Tendon using high-frequency ultrasound imaging. J Biomech Eng 136:021029–021029. doi: 10.1115/1.4026285 CrossRefGoogle Scholar
  87. Riley G (2008) Tendinopathy–from basic science to treatment. Nat Clin Pract Rheumatol 4:82–89MathSciNetCrossRefGoogle Scholar
  88. Riley GP, Harrall RL, Constant CR, Chard MD, Cawston TE, Hazleman BL (1994) Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis. Ann Rheum Dis 53:359–366CrossRefGoogle Scholar
  89. Robbins JR, Evanko SP, Vogel KG (1997) Mechanical loading and TGF-\(\upbeta \) regulate proteoglycan synthesis in tendon. Arch Biochem Biophys 342:203–211. doi: 10.1006/abbi.1997.0102 CrossRefGoogle Scholar
  90. Samiric T, Parkinson J, Ilic MZ, Cook J, Feller JA, Handley CJ (2009) Changes in the composition of the extracellular matrix in patellar tendinopathy. Matrix Biol 28:230–236. doi: 10.1016/j.matbio.2009.04.001 CrossRefGoogle Scholar
  91. Screen H, Bader D, Lee D, Shelton J (2004) Local strain measurement within tendon. Strain 40:157–163CrossRefGoogle Scholar
  92. Screen H, Evans S (2009) Measuring strain distributions in the tendon using confocal microscopy and finite elements. J Strain Anal Eng Des 44:327–335CrossRefGoogle Scholar
  93. Screen HR, Berk DE, Kadler KE, Ramirez F, Young MF (2015) Tendon functional extracellular matrix. J Orthop Res 33:793–799. doi: 10.1002/jor.22818 CrossRefGoogle Scholar
  94. Sharma P, Maffulli N (2005) Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg 87:187–202Google Scholar
  95. Shimizu N et al (1994) Cyclic-tension force stimulates interleukin-1 beta production by human periodontal ligament cells. J Periodontal Res 29:328–333CrossRefGoogle Scholar
  96. Skutek M, van Griensven M, Zeichen J, Brauer N, Bosch U (2001) Cyclic mechanical stretching enhances secretion of Interleukin 6 in human tendon fibroblasts. Knee Surg Sports Traumatol Arthrosc 9:322–326. doi: 10.1007/s001670100217 CrossRefGoogle Scholar
  97. Smith DW et al (2013) A conceptual framework for computational models of Achilles tendon homeostasis. Wiley Interdiscip Rev Syst biolo Med 5:523–538. doi: 10.1002/wsbm.1229 CrossRefGoogle Scholar
  98. Smith MM et al (2008) Modulation of aggrecan and ADAMTS expression in ovine tendinopathy induced by altered strain. Arthritis Rheum 58:1055–1066CrossRefGoogle Scholar
  99. Spiesz EM, Thorpe CT, Chaudhry S, Riley GP, Birch HL, Clegg PD, Screen HR (2015) Tendon extracellular matrix damage, degradation and inflammation in response to in vitro overload exercise. J Orthop Res 33:889–897. doi: 10.1002/jor.22879 CrossRefGoogle Scholar
  100. Stephens PR, Nunamaker DM, Butterweck DM (1989) Application of a Hall-effect transducer for measurement of tendon strains in horses. Am J Vet Res 50:1089–1095Google Scholar
  101. Sun HB, Li Y, Fung DT, Majeska RJ, Schaffler MB, Flatow EL (2008) Coordinate regulation of IL-\(1\upbeta \) and MMP-13 in rat tendons following subrupture fatigue damage. Clin Orthop Relat Res 466:1555–1561. doi: 10.1007/s11999-008-0278-4 CrossRefGoogle Scholar
  102. Sun HB, Schaniel C, Leong DJ, Wang JHC (2015) Biology and mechano-response of tendon cells: progress overview and perspectives. J Orthop Res 33:785–792CrossRefGoogle Scholar
  103. Svensson RB, Mulder H, Kovanen V, Magnusson SP (2013) Fracture mechanics of collagen fibrils: influence of natural cross-links. Biophys J 104:2476–2484CrossRefGoogle Scholar
  104. Szczesny SE, Fetchko KL, Dodge GR, Elliott DM (2017) Evidence that interfibrillar load transfer in tendon is supported by small diameter fibrils and not extrafibrillar tissue components. J Orthop Res. doi: 10.1002/jor.23517 Google Scholar
  105. Tetsunaga T et al (2011) Regulation of mechanical stress-induced MMP-13 and ADAMTS-5 expression by RUNX-2 transcriptional factor in SW1353 chondrocyte-like cells. Osteoarthr Cartil 19:222–232CrossRefGoogle Scholar
  106. Thampatty BP, Li H, Im H-J, Wang JHC (2007) EP4 receptor regulates collagen type-I, MMP-1, and MMP-3 gene expression in human tendon fibroblasts in response to IL-\(1\upbeta \) treatment. Gene 386:154–161. doi: 10.1016/j.gene.2006.08.027 CrossRefGoogle Scholar
  107. Thorpe C et al (2015) Tendon overload results in alterations in cell shape and increased markers of inflammation and matrix degradation. Scand J Med Sci Sports 25:e381–e391CrossRefGoogle Scholar
  108. Tsuzaki M, Bynum D, Almekinders L, Yang X, Faber J, Banes AJ (2003a) ATP modulates load-inducible IL-\(1\upbeta \), COX 2, and MMP-3 gene expression in human tendon cells. J Cell Biochem 89:556–562CrossRefGoogle Scholar
  109. Tsuzaki M et al (2003b) IL-\(1\upbeta \) induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-\(1\upbeta \) and IL-6 in human tendon cells. Journal of Orthopaedic Research 21:256–264. doi: 10.1016/s0736-0266(02)00141-9 CrossRefGoogle Scholar
  110. Uchida H, Tohyama H, Nagashima K, Ohba Y, Matsumoto H, Toyama Y, Yasuda K (2005) Stress deprivation simultaneously induces over-expression of interleukin-1beta, tumor necrosis factor-alpha, and transforming growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendon. J Biomech 38:791–798. doi: 10.1016/j.jbiomech.2004.05.009 CrossRefGoogle Scholar
  111. van Turnhout MC, Haazelager MB, Gijsen MA, Schipper H, Kranenbarg S, van Leeuwen JL (2008) Quantitative description of collagen structure in the articular cartilage of the young and adult equine distal metacarpus. Anim Biol 58:353–370CrossRefGoogle Scholar
  112. van Turnhout MC, Kranenbarg S, Van Leeuwen JL (2011) Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage. Biomech Model Mechanobiol 10:269–279Google Scholar
  113. van Turnhout MC, Schipper H, Engel B, Buist W, Kranenbarg S, van Leeuwen JL (2010) Postnatal development of collagen structure in ovine articular cartilage. BMC Dev Biol 10:1CrossRefGoogle Scholar
  114. Veres SP, Lee JM (2012) Designed to fail: a novel mode of collagen fibril disruption and its relevance to tissue toughness. Biophys J 102:2876–2884. doi: 10.1016/j.bpj.2012.05.022 CrossRefGoogle Scholar
  115. Wang JH, Jia F, Yang G, Yang S, Campbell BH, Stone D, Woo SL (2003) Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Connect Tissue Res 44:128–133Google Scholar
  116. Wang JHC (2006) Mechanobiology of tendon. J Biomech 39:1563–1582. doi: 10.1016/j.jbiomech.2005.05.011
  117. Wang T et al (2013) Programmable mechanical stimulation influences tendon homeostasis in a bioreactor system. Biotechnol Bioeng 110:1495–1507CrossRefGoogle Scholar
  118. Wang T et al (2015) Cyclic mechanical stimulation rescues achilles tendon from degeneration in a bioreactor system. J Orthop Res 33:1888–1896. doi: 10.1002/jor.22960 CrossRefGoogle Scholar
  119. Wang W, Tang X, Zhang J, Yan X, Ma Y (2010) Complete stress shielding of the Achilles tendon: ultrastructure and level of interleukin-1 and TGF-beta. Orthopedics 33:810. doi: 10.3928/01477447-20100924-26 CrossRefGoogle Scholar
  120. Woessner JF (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2154Google Scholar
  121. Wren TA, Yerby SA, Beaupre GS, Carter DR (2001) Mechanical properties of the human achilles tendon. Clin Biomech 16:245–251Google Scholar
  122. Wren TAL, Beaupre GS, Carter DR (2000) Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia. J Rehabil Res Dev 37:135Google Scholar
  123. Wren TAL, Lindsey DP, Beaupré GS, Carter DR (2003) Effects of creep and cyclic loading on the mechanical properties and failure of human Achilles tendons. Ann Biomed Eng 31:710–717Google Scholar
  124. Yang G, Crawford RC, Wang JHC (2004) Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech 37:1543–1550. doi: 10.1016/j.jbiomech.2004.01.005 CrossRefGoogle Scholar
  125. Yang G, Im HJ, Wang JH (2005) Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene 363:166–172. doi: 10.1016/j.gene.2005.08.006 CrossRefGoogle Scholar
  126. Yoon JH, Halper J (2005) Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact 5:22–34Google Scholar
  127. Young SR, Gardiner B, Mehdizadeh A, Rubenson J, Umberger B, Smith DW (2016) Adaptive remodeling of achilles tendon: a multi-scale computational model. PLoS comput biol 12:e1005106. doi: 10.1371/journal.pcbi.1005106 CrossRefGoogle Scholar
  128. Zhang J, Wang JH (2013) The effects of mechanical loading on tendons - an in vivo and in vitro model study. PLoS One 8:e71740. doi: 10.1371/journal.pone.0071740 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Arash Mehdizadeh
    • 1
    • 4
  • Bruce S. Gardiner
    • 2
  • Michael Lavagnino
    • 3
  • David W. Smith
    • 1
  1. 1.Faculty of Engineering, Computing and MathematicsUniversity of Western AustraliaCrawleyAustralia
  2. 2.Physics and Nanotechnology, School of Engineering and Information TechnologyMurdoch UniversityMurdochAustralia
  3. 3.Laboratory for Comparative Orthopedic Research, College of Veterinary MedicineMichigan State UniversityEast LansingUSA
  4. 4.School of EngineeringAustralian College of KuwaitWest MishrefKuwait

Personalised recommendations