Biomechanics and Modeling in Mechanobiology

, Volume 16, Issue 4, pp 1171–1185 | Cite as

Ultrasound palpation for fast in-situ quantification of articular cartilage stiffness, thickness and relaxation capacity

  • M. Schöne
  • R. M. Schulz
  • H. Tzschätzsch
  • P. Varga
  • K. Raum
Original Paper
  • 151 Downloads

Abstract

Most current cartilage testing devices require the preparation of excised samples and therefore do not allow intra-operative application for diagnostic purposes. The gold standard during open or arthroscopic surgery is still the subjective perception of manual palpation. This work presents a new diagnostic method of ultrasound palpation (USP) to acquire applied stress and strain data during manual palpation of articular cartilage. With the proposed method, we obtain cartilage thickness and stiffness. Moreover, repeated palpations allow the quantification of relaxation effects. USP measurements on elastomer phantoms demonstrated very good repeatability for both, stage-guided (97.2%) and handheld (96.0%) applications. The USP measurements were compared with conventional indentation experiments and revealed very good agreement on elastomer phantoms (\(r = 0.98\)) and good agreement on porcine cartilage samples (\(r = 0.76\)). Artificially degenerated cartilage samples showed reduced stiffness, weak capacity to relax after palpation and an increase of stiffness of approximately 50% with each single palpation. Intact cartilage was measured by USP directly at the patella (in situ) and after excision and removal of the subchondral bone (ex situ), leading to stiffness values of \(12.1\pm 5.5\) and \(8.5\pm 5.9\,\hbox {MPa}\) (\(p<0.05\)), respectively. The results demonstrate the potential of the USP system for cartilage testing, its sensitivity to degenerative changes and as a method for quantifying relaxation processes by means of repeated palpations. Furthermore, the differences in the results of in-situ and ex-situ measurements are of general interest, since such comparison has not been reported previously. We point out the limited comparability of ex-situ cartilage with its in-situ biomechanical behavior.

Keywords

Articular cartilage In-situ Biomechanical testing Stiffness Ultrasound palpation Indentation Degeneration 

Supplementary material

Supplementary material 1 (mpg 20822 KB)

References

  1. Abedian R, Willbold E, Becher C, Hurschler C (2013) In vitro electro-mechanical characterization of human knee articular cartilage of different degeneration levels: a comparison with ICRS and Mankin scores. J Biomech 46(7):1328–1334CrossRefGoogle Scholar
  2. Appleyard RC, Swain MV, Khanna S, Murrell GAC (2001) The accuracy and reliability of a novel handheld dynamic indentation probe for analysing articular cartilage. Phys Med Biol 46(2):541CrossRefGoogle Scholar
  3. Ateshian GA (2009) The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech 42(9):1163–1176CrossRefGoogle Scholar
  4. Benninghoff A (1925) Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion: Zweiter Teil: Der Aufbau des Gelenkknorpels in seinen Beziehungen zur Funktion, Z Zellforsch 2:783–862Google Scholar
  5. Chahine N, Wang C, Hung C, Ateshian G (2004) Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression. J Biomech 37(8):1251–1261CrossRefGoogle Scholar
  6. Changoor A, Fereydoonzad L, Yaroshinsky A, Buschmann MD (2010) Effects of refrigeration and freezing on the electromechanical and biomechanical properties of articular cartilage. J Biomech Eng 132(6):064502CrossRefGoogle Scholar
  7. Cheng S, Clarke EC, Bilston LE (2009) The effects of preconditioning strain on measured tissue properties. J Biomech 42(9):1360–1362CrossRefGoogle Scholar
  8. Duda GN, Kleemann RU, Bluecher U, Weiler A (2004) A new device to detect early cartilage degeneration. Am J Sports Med 32(3):693–698CrossRefGoogle Scholar
  9. Föhr P, Hautmann V, Prodinger P, Pohlig F, Kaddick C, Burgkart R (2012) Hochdynamisches Prüfsystem zur biomechanischen Charakterisierung von Knorpel und seinen Regeneraten. Der Orthopäde 41(10):820–826CrossRefGoogle Scholar
  10. Galle J, Bader A, Hepp P, Grill W, Fuchs B, Käs J, Krinner A, MarquaB B, Müller K, Schiller J, Schulz R, von Buttlar M, von der Burg E, Zscharnack M, Löffler M (2010) Mesenchymal stem cells in cartilage repair: state of the art and methods to monitor cell growth, differentiation and cartilage regeneration. Curr Med Chem 17(21):2274–2291CrossRefGoogle Scholar
  11. Gelse K, Olk A, Eichhorn S, Swoboda B, Schoene M, Raum K (2010) Quantitative ultrasound biomicroscopy for the analysis of healthy and repair cartilage tissue. Eur Cell Mater 19:58–71CrossRefGoogle Scholar
  12. Giese U (2014) Aging behavior of elastomers. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin, pp 1–7Google Scholar
  13. Gu WY, Lai WM, Mow VC (1993) Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage. J Biomech 26(6):709–723CrossRefGoogle Scholar
  14. Hayes W, Keer L, Herrmann G, Mockros L (1972) A mathematical analysis for indentation tests of articular cartilage. J Biomech 5(5):541–551CrossRefGoogle Scholar
  15. Hosseini SM, Veldink MB, Ito K, Donkelaar CCV (2013) Is collagen fiber damage the cause of early softening in articular cartilage? Osteoarthr Cartilage 21(1):136–143CrossRefGoogle Scholar
  16. Hunziker EB, Lippuner K, Keel MJB, Shintani N (2015) An educational review of cartilage repair: precepts & practice myths & misconceptions progress & prospects. Osteoarthr Cartilage 23(3):334–350CrossRefGoogle Scholar
  17. Julkunen P, Wilson W, Jurvelin JS, Rieppo J, Qu CJ, Lammi MJ, Korhonen RK (2008) Stress–relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. J Biomech 41(9):1978–1986CrossRefGoogle Scholar
  18. Jurvelin JS, Räsänen T, Kolmonens P, Lyyra T (1995) Comparison of optical, needle probe and ultrasonic techniques for the measurement of articular cartilage thickness. J Biomech 28(2):231–235CrossRefGoogle Scholar
  19. Kock LM, Schulz RM, van Donkelaar CC, Thümmler CB, Bader A, Ito K (2009) RGD-dependent integrins are mechanotransducers in dynamically compressed tissue-engineered cartilage constructs. J Biomech 42(13):2177–2182CrossRefGoogle Scholar
  20. Korhonen RK, Laasanen MS, Töyräs J, Rieppo J, Hirvonen J, Helminen HJ, Jurvelin JS (2002) Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech 35(7):903–909CrossRefGoogle Scholar
  21. Korhonen RK, Laasanen MS, Töyräs J, Lappalainen R, Helminen HJ, Jurvelin JS (2003) Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J Biomech 36(9):1373–1379CrossRefGoogle Scholar
  22. Laasanen MS, Töyräs J, Hirvonen J, Saarakkala S, Korhonen RK, Nieminen MT, Kiviranta I, Jurvelin JS (2002) Novel mechano-acoustic technique and instrument for diagnosis of cartilage degeneration. Physiol Meas 23:491–503CrossRefGoogle Scholar
  23. Laasanen M, Töyräs J, Korhonen R, Rieppo J, Saarakkala S, Nieminen M, Hirvonen J, Jurvelin J (2003) Biomechanical properties of knee articular cartilage. Biorheology 40(1):133–140Google Scholar
  24. Lau JC, Li-Tsang CW, Zheng Y (2005) Application of tissue ultrasound palpation system (TUPS) in objective scar evaluation. Burns 31(4):445–452CrossRefGoogle Scholar
  25. Li LP, Herzog W (2004) Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization. J Biomech 37(3):375–382CrossRefGoogle Scholar
  26. Liukkonen J, Lehenkari P, Hirvasniemi J, Joukainen A, Virn T, Saarakkala S, Nieminen MT, Jurvelin JS, Töyräs J (2014) Ultrasound arthroscopy of human knee cartilage and subchondral bone in vivo. Ultrasound Med Biol 40(9):2039–2047CrossRefGoogle Scholar
  27. Lötjönen P, Julkunen P, Töyräs J, Lammi MJ, Jurvelin JS, Nieminen HJ (2009) Strain-dependent modulation of ultrasound speed in articular cartilage under dynamic compression. Ultrasound Med Biol 35(7):1177–1184CrossRefGoogle Scholar
  28. Lu XL, Mow VC (2008) Biomechanics of articular cartilage and determination of material properties. Med Sci Sports Exer 40(2):193–199CrossRefGoogle Scholar
  29. Lu XL, Wan LQ, Edward Guo X, Mow VC (2010) A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis. J Biomech 43(4):673–679CrossRefGoogle Scholar
  30. Lyyra T, Jurvelin J, Pitkänen P, Väätäinen U, Kiviranta I (1995) Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med Eng Phys 17(5):395–399CrossRefGoogle Scholar
  31. Männicke N, Schöne M, Oelze M, Raum K (2014) Articular cartilage degeneration classification by means of high-frequency ultrasound. Osteoarthr Cartilage 22(10):1577–1582CrossRefGoogle Scholar
  32. Mansour JM, Gu DWM, Chung CY, Heebner J, Althans J, Abdalian S, Schluchter MD, Liu Y, Welter JF (2014) Towards the feasibility of using ultrasound to determine mechanical properties of tissues in a bioreactor. Ann Biomed Eng 42(10):2190–2202CrossRefGoogle Scholar
  33. Miller GJ, Morgan EF (2010) Use of microindentation to characterize the mechanical properties of articular cartilage: comparison of biphasic material properties across length scales. Osteoarthr Cartilage 18(8):1051–1057CrossRefGoogle Scholar
  34. Moody HR, Brown CP, Bowden JC, Crawford RW, McElwain DLS, Oloyede AO (2006) In vitro degradation of articular cartilage: does trypsin treatment produce consistent results? J Anat 209(2):259–267CrossRefGoogle Scholar
  35. Mow VC, Guo XE (2002) Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng 4(1):175–209CrossRefGoogle Scholar
  36. Mow VC, Holmes MH, Michael Lai W (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17(5):377–394CrossRefGoogle Scholar
  37. Mow VC, Gibbs M, Lai W, Zhu W, Athanasiou K (1989) Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study. J Biomech 22(8–9):853–861CrossRefGoogle Scholar
  38. Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42(1):339–362CrossRefGoogle Scholar
  39. Niederauer GG, Niederauer GM, Cullen LC, Athanasiou KA, Thomas JB, Niederauer MQ (2004) Correlation of cartilage stiffness to thickness and level of degeneration using a handheld indentation probe. Ann Biomed Eng 32(3):352–359CrossRefGoogle Scholar
  40. Nieminen HJ, Töyräs J, Laasanen MS, Jurvelin JS (2006) Acoustic properties of articular cartilage under mechanical stress. Biorheology 43(3–4):523–535Google Scholar
  41. Nieminen HJ, Julkunen P, Töyräs J, Jurvelin JS (2007) Ultrasound speed in articular cartilage under mechanical compression. Ultrasound Med Biol 33(11):1755–1766CrossRefGoogle Scholar
  42. Patwari P, Cheng DM, Cole AA, Kuettner KE, Grodzinsky AJ (2007) Analysis of the relationship between peak stress and proteoglycan loss following injurious compression of human post-mortem knee and ankle cartilage. Biomech Model Mechan 6(1–2):83–89CrossRefGoogle Scholar
  43. Pesavento A, Perrey C, Krueger M, Ermert H (1999) A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation. IEEE Trans Ultrason Ferrelectr Freq Control 46(5):1057–1067CrossRefGoogle Scholar
  44. Raum K, Schöne M, Varga P (2013) Ultrasonic palpator, measurement system and kit comprising the same, method for determining a property of an object, method for operating and method for calibrating a palpator. EP Patent App. EP20,130,786,433Google Scholar
  45. Saarakkala S, Laasanen MS, Jurvelin JS, Törrönen K, Lammi MJ, Lappalainen R, Töyräs J (2003) Ultrasound indentation of normal and spontaneously degenerated bovine articular cartilage. Osteoarthr Cartilage 11(9):697–705CrossRefGoogle Scholar
  46. Saarakkala S, Töyräs J, Hirvonen J, Laasanen MS, Lappalainen R, Jurvelin JS (2004) Ultrasonic quantitation of superficial degradation of articular cartilage. Ultrasound Med Biol 30(6):783–792CrossRefGoogle Scholar
  47. Salarian A (2016) Intraclass Correlation Coefficient (ICC). MATLAB Central File Exchange. http://ch.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient--icc-. Retrieved 13 Jan 2017
  48. Schöne M, Männicke N, Gottwald M, Göbel F, Raum K (2013) 3-D high-frequency ultrasound improves the estimation of surface properties in degenerated cartilage. Ultrasound Med Biol 39(5):834–844CrossRefGoogle Scholar
  49. Schöne M, Männicke N, Somerson JS, Marqua B, Henkelmann R, Aigner T, Raum K, Schulz RM (2016) 3d ultrasound biomicroscopy for assessment of cartilage repair tissue: volumetric characterisation and correlation to established classification systems. Eur Cell Mater 31:119–135CrossRefGoogle Scholar
  50. Schulz RM, Bader A (2007) Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36(4–5):539–568CrossRefGoogle Scholar
  51. Silver FH, Bradica G (2002) Mechanobiology of cartilage: how do internal and external stresses affect mechanochemical transduction and elastic energy storage? Biomech Model Mechan 1(3):219–238CrossRefGoogle Scholar
  52. Spahn G, Plettenberg H, Kahl E, Klinger HM, Mückley T, Hofmann GO (2007) Near-infrared (NIR) spectroscopy. A new method for arthroscopic evaluation of low grade degenerated cartilage lesions. Results of a pilot study. BMC Musculoskelet Disord 8(1):47CrossRefGoogle Scholar
  53. Spahn G, Klinger HM, Hofmann GO (2009) How valid is the arthroscopic diagnosis of cartilage lesions? Results of an opinion survey among highly experienced arthroscopic surgeons. Arch Orthop Trauma Surg 129(8):1117–1121CrossRefGoogle Scholar
  54. Spahn G, Klinger HM, Baums M, Pinkepank U, Hofmann GO (2011) Reliability in arthroscopic grading of cartilage lesions: results of a prospective blinded study for evaluation of inter-observer reliability. Arch Orthop Trauma Surg 131(3):377–381CrossRefGoogle Scholar
  55. Szarko M, Muldrew K, Bertram JE (2010) Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage. BMC Musculoskelet Disord 11:231CrossRefGoogle Scholar
  56. Töyräs J, Laasanen MS, Saarakkala S, Lammi MJ, Rieppo J, Kurkijärvi J, Lappalainen R, Jurvelin JS (2003) Speed of sound in normal and degenerated bovine articular cartilage. Ultrasound Med Biol 29(3):447–454CrossRefGoogle Scholar
  57. Turunen SM, Lammi MJ, Saarakkala S, Han SK, Herzog W, Tanska P, Korhonen RK (2012) The effect of collagen degradation on chondrocyte volume and morphology in bovine articular cartilage following a hypotonic challenge. Biomech Model Mechanobiol 12(3):417–429CrossRefGoogle Scholar
  58. Tzschätzsch H, Elgeti T, Rettig K, Kargel C, Klaua R, Schultz M, Braun J, Sack I (2012) In vivo time harmonic elastography of the human heart. Ultrasound Med Biol 38(2):214–222Google Scholar
  59. Uchio Y, Ochi M, Adachi N, Kawasaki K, Iwasa J (2002) Arthroscopic assessment of human cartilage stiffness of the femoral condyles and the patella with a new tactile sensor. Med Eng Phys 24(6):431–435CrossRefGoogle Scholar
  60. Wang H, Ateshian GA (1997) The normal stress effect and equilibrium friction coefficient of articular cartilage under steady frictional shear. J Biomech 30(8):771–776CrossRefGoogle Scholar
  61. Zhang M, Zheng Y, Mak AF (1997) Estimating the effective Young’s modulus of soft tissues from indentation testsnonlinear finite element analysis of effects of friction and large deformation. Med Eng Phys 19(6):512–517CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • M. Schöne
    • 1
  • R. M. Schulz
    • 2
  • H. Tzschätzsch
    • 3
  • P. Varga
    • 4
  • K. Raum
    • 1
  1. 1.Berlin-Brandenburg School for Regenerative TherapiesCharité - Universitätsmedizin BerlinBerlinGermany
  2. 2.Department of Orthopedics, Trauma and Plastic SurgeryUniversity of LeipzigLeipzigGermany
  3. 3.Department of RadiologyCharité - Universitätsmedizin BerlinBerlinGermany
  4. 4.AO Research Institute DavosDavosSwitzerland

Personalised recommendations