Biomechanics and Modeling in Mechanobiology

, Volume 15, Issue 6, pp 1685–1698 | Cite as

Simulation of extracellular matrix remodeling by fibroblast cells in soft three-dimensional bioresorbable scaffolds

  • Chaochao Zhou
  • Sha Jin
  • Ryan WillingEmail author
Original Paper


To culture functional soft tissues and organs in three-dimensional scaffolds, it is essential to elucidate the optimal scaffold mechanical properties. However, mechanoregulated soft tissue remodeling is not well understood. In this study, we hypothesized that individual cells are capable of remodeling extracellular matrix within a short proximity of themselves in order to match the stiffness of the broader surrounding matrix. This theory was implemented in a three-dimensional finite element model to simulate soft tissue remodeling of human fibroblast cells in two collagen–chitosan scaffolds with different mechanical properties. Simulation results closely matched with previously reported experimental data, showing that soft tissue growth in compliant (Scaf-A, 4.30 kPa) and stiff (Scaf-B, 17.03 kPa) scaffolds led to an almost eightfold difference in the resulting stiffnesses after 10 days (8.40 kPa for Scaf-A, 59.25 kPa for Scaf-B). Furthermore, varying the simulated rate for tissue remodeling by \(\pm \)50 % caused unequal changes in the resulting stiffness (+3.6 and \(-\)23 % for Scaf-A, +5 and \(-\)17 % for Scaf-B), and \(\pm \)50 % changes in the assumed upper limit on tissue stiffness only had larger effects on the stiff scaffold (+42 and \(-\)44 % for Scaf-B). These results reinforce the notion that soft tissue remodeling is governed by the stiffness of the surrounding matrix, until meeting an upper limit on tissue stiffness.


Soft tissue biomechanics Finite element analysis Scaffold Fibroblast Extracellular matrix Mechanical properties 



This research was funded, in part, by the Interdisciplinary Collaboration Grants (ICG) program at Binghamton University through the Health Sciences Transdisciplinary Area of Excellence (TAE).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10237_2016_791_MOESM1_ESM.docx (161 kb)
Supplementary material 1 (docx 160 KB)


  1. Adachi T, Osako Y, Tanaka M et al (2006) Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27:3964–3972. doi: 10.1016/j.biomaterials.2006.02.039 CrossRefGoogle Scholar
  2. Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 76:1274–1278. doi: 10.1073/pnas.76.3.1274 CrossRefGoogle Scholar
  3. Boccaccio A, Prendergast PJ, Pappalettere C, Kelly DJ (2008) Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med Biol Eng Comput 46:283–298. doi: 10.1007/s11517-007-0247-1 CrossRefGoogle Scholar
  4. Borau C, Kamm RD, García-Aznar JM (2011) Mechano-sensing and cell migration: a 3D model approach. Phys Biol 8:1478–3967. doi: 10.1088/1478-3975/8/6/066008 CrossRefGoogle Scholar
  5. Bott K, Upton Z, Schrobback K et al (2010) The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials 31:8454–8464. doi: 10.1016/j.biomaterials.2010.07.046 CrossRefGoogle Scholar
  6. Byrne DP, Lacroix D, Planell JA et al (2007) Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554. doi: 10.1016/j.biomaterials.2007.09.003 CrossRefGoogle Scholar
  7. Cha C, Jeong JH, Shim J, Kong H (2011) Tuning the dependency between stiffness and permeability of a cell encapsulating hydrogel with hydrophilic pendant chains. Acta Biomater 7:3719–3728. doi: 10.1016/j.actbio.2011.06.017 CrossRefGoogle Scholar
  8. Chen J, Irianto J, Inamdar S et al (2012) Cell mechanics, structure, and function are regulated by the stiffness of the three-dimensional microenvironment. Biophys J 103:1188–1197. doi: 10.1016/j.bpj.2012.07.054 CrossRefGoogle Scholar
  9. Chen Y, Zhou S, Li Q (2011a) Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems. Acta Biomater 7:1140–1149. doi: 10.1016/j.actbio.2010.09.038 CrossRefGoogle Scholar
  10. Chen Y, Zhou S, Li Q (2011) Microstructure design of biodegradable scaffold and its effect on tissue regeneration. Biomaterials 32:5003–5014. doi: 10.1016/j.biomaterials.2011.03.064 CrossRefGoogle Scholar
  11. Cukierman E, Pankov R, Yamada KM (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 13:633–639. doi: 10.1016/S0955-0674(02)00364-2 CrossRefGoogle Scholar
  12. De Santis G, Lennon AB, Boschetti F et al (2011) How can cells sense the elasticity of a substrate? An analysis using a cell tensegrity model. Eur Cell Mater 22:202–213Google Scholar
  13. Discher DE, Janmey P, Wang Y-L (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143. doi: 10.1126/science.1116995 CrossRefGoogle Scholar
  14. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. doi: 10.1016/j.cell.2006.06.044 CrossRefGoogle Scholar
  15. Freyman TM, Yannas IV, Yokoo R, Gibson LJ (2002) Fibroblast contractile force is independent of the stiffness which resists the contraction. Exp Cell Res 272:153–162. doi: 10.1006/excr.2001.5408 CrossRefGoogle Scholar
  16. Georges PC, Janmey PA (2005) Cell type-specific response to growth on soft materials. J Appl Physiol 98:1547–1553. doi: 10.1152/japplphysiol.01121.2004 CrossRefGoogle Scholar
  17. Gómez-Benito MJ, García-Aznar JM, Kuiper JH, Doblaré M (2005) Influence of fracture gap size on the pattern of long bone healing: a computational study. J Theor Biol 235:105–119. doi: 10.1016/j.jtbi.2004.12.023 MathSciNetCrossRefGoogle Scholar
  18. Göpferich A (1997) Polymer bulk erosion. Macromolecules 9297:2598–2604. doi: 10.1021/ma961627y
  19. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224. doi: 10.1038/nrm1858 CrossRefGoogle Scholar
  20. Grinnell F, Petroll WM (2010) Cell motility and mechanics in three-dimensional collagen matrices. Annu Rev Cell Dev Biol 26:335–361. doi: 10.1146/annurev.cellbio.042308.113318 CrossRefGoogle Scholar
  21. Guilak F, Butler DL, Goldstein SA, Baaijens FPT (2014) Biomechanics and mechanobiology in functional tissue engineering. J Biomech 47:1933–1940. doi: 10.1016/j.jbiomech.2014.04.019 CrossRefGoogle Scholar
  22. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12. doi: 10.1016/S0169-409X(01)00239-3 CrossRefGoogle Scholar
  23. Hollister SSJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524. doi: 10.1038/nmat1421 CrossRefGoogle Scholar
  24. Howling GI, Dettmar PW, Goddard PA et al (2002) The effect of chitin and chitosan on fibroblast-populated collagen lattice contraction. Biotechnol Appl Biochem 36:247–253. doi: 10.1042/BA20020040
  25. Huiskes R, Weinans H, van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. doi: 10.1097/00003086-199201000-00014 Google Scholar
  26. Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:27. doi: 10.1096/fj.05-5424rev CrossRefGoogle Scholar
  27. Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599. doi: 10.1146/annurev.physiol.59.1.575 CrossRefGoogle Scholar
  28. Ingber DE (2014) Mechanobiology, tissue development and organ engineering. In: Lanza, R, Langer R, Vacanti JP (eds) Principles of tissue engineering, 4th edn. Academic Press, Cambridge pp 309–322Google Scholar
  29. Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today 90:75–85. doi: 10.1002/bdrc.20173 CrossRefGoogle Scholar
  30. Kihara T, Ito J, Miyake J (2013) Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy. PLoS One. doi: 10.1371/journal.pone.0082382 Google Scholar
  31. Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35:1163–1171. doi: 10.1016/S0021-9290(02)00086-6 CrossRefGoogle Scholar
  32. Lai VK, Hadi MF, Tranquillo RT, Barocas VH (2013) A multiscale approach to modeling the passive mechanical contribution of cells in tissues. J Biochem Eng 135:71007. doi: 10.1115/1.4024350 Google Scholar
  33. Lesman A, Notbohm J, Tirrell DA, Ravichandran G (2014) Contractile forces regulate cell division in three-dimensional environments. J Cell Biol 205:155–162. doi: 10.1083/jcb.201309029 CrossRefGoogle Scholar
  34. McClelland RE, Dennis R, Reid LM et al (2012) Tissue engineering. In: Enderle J, Bronzino J (eds) Introduction to biomedical engineering, 3rd edn. Academic Press, Cambridge, pp 273–357Google Scholar
  35. Mousavi SJ, Doweidar MH, Doblaré M (2013) 3D computational modelling of cell migration: a mechano–chemo–thermo–electrotaxis approach. J Theor Biol 329:64–73. doi: 10.1016/j.jtbi.2013.03.021 CrossRefzbMATHGoogle Scholar
  36. Nyitray CE, Chavez MG, Desai TA (2014) Compliant 3D microenvironment improves \(\beta \)-cell cluster insulin expression through mechanosensing and \(\beta \)-catenin signaling. Tissue Eng Part A 20:1888–1895. doi: 10.1089/ten.TEA.2013.0692 CrossRefGoogle Scholar
  37. Pei M, Solchaga L, Seidel J et al (2002) Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J 16:1691–1694. doi: 10.1096/fj.02 Google Scholar
  38. Pérez MA, Prendergast PJ (2007) Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. J Biomech 40:2244–2253. doi: 10.1016/j.jbiomech.2006.10.020 CrossRefGoogle Scholar
  39. Rajam AM, Jithendra P, Rose C, Mandal AB (2012) In vitro evaluation of dual growth factor-incorporated chitosan nanoparticle impregnated collagen-chitosan scaffold for tissue engineering. J Bioact Compat Polym 27:265–277. doi: 10.1177/0883911512442123 CrossRefGoogle Scholar
  40. Richardson JB, Kenwright J, Cunningham JL (1992) Fracture stiffness measurement in the assessment and management of tibial fractures. Clin Biomech 7:75–79. doi: 10.1016/0268-0033(92)90018-Y CrossRefGoogle Scholar
  41. Schwarz US, Erdmann T, Bischofs IB (2006) Focal adhesions as mechanosensors: the two-spring model. Biosystems 83:225–232. doi: 10.1016/j.biosystems.2005.05.019 CrossRefGoogle Scholar
  42. Sengers BG, Taylor M, Please CP, Oreffo ROC (2007) Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials 28:1926–1940. doi: 10.1016/j.biomaterials.2006.12.008
  43. Solon J, Levental I, Sengupta K et al (2007) Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 93:4453–4461. doi: 10.1529/biophysj.106.101386 CrossRefGoogle Scholar
  44. Stella J, D’Amore A, Wagner W, Sacks M (2010) On the biomechanical function of scaffolds for engineering load-bearing soft tissues. Acta Biomater 6:2365–2381. doi: 10.1016/j.actbio.2010.01.001 CrossRefGoogle Scholar
  45. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275. doi: 10.1038/nrm1890 CrossRefGoogle Scholar
  46. Wang JHC, Thampatty BP (2006) An introductory review of cell mechanobiology. Biomech Model Mechanobiol 5:1–16. doi: 10.1007/s10237-005-0012-z CrossRefGoogle Scholar
  47. Wang N, Naruse K, Stamenović D et al (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci USA 98:7765–7770. doi: 10.1073/pnas.141199598 CrossRefGoogle Scholar
  48. Wang N, Tolić-Nørrelykke IM, Chen J et al (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282:C606–C616. doi: 10.1152/ajpcell.00269.2001 CrossRefGoogle Scholar
  49. Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47:1394–1400. doi: 10.1002/hep.22193 CrossRefGoogle Scholar
  50. Woodruff TM, Crane JW, Proctor LM et al (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:1407–1417. doi: 10.1096/fj.05 CrossRefGoogle Scholar
  51. Zaman MH, Kamm RD, Matsudaira P, Lauffenburger Da (2005) Computational model for cell migration in three-dimensional matrices. Biophys J 89:1389–1397. doi: 10.1529/biophysj.105.060723 CrossRefGoogle Scholar
  52. Zhu Y, Dong Z, Wejinya UC et al (2011) Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation. J Biomech 44:2356–2361. doi: 10.1016/j.jbiomech.2011.07.010 CrossRefGoogle Scholar
  53. Zhu Y, Liu T, Song K et al (2009) Collagen-chitosan polymer as a scaffold for the proliferation of human adipose tissue-derived stem cells. J Mater Sci Mater Med 20:799–808. doi: 10.1007/s10856-008-3636-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringState University of New York at BinghamtonBinghamtonUSA
  2. 2.Department of Biomedical EngineeringState University of New York at BinghamtonBinghamtonUSA

Personalised recommendations