Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 15, Issue 5, pp 1279–1294 | Cite as

A computational model to explore the role of angiogenic impairment on endochondral ossification during fracture healing

  • Adam OReilly
  • Kurt D. Hankenson
  • Daniel J. Kelly
Original Paper

Abstract

While it is well established that an adequate blood supply is critical to successful bone regeneration, it remains poorly understood how progenitor cell fate is affected by the altered conditions present in fractures with disrupted vasculature. In this study, computational models were used to explore how angiogenic impairment impacts oxygen availability within a fracture callus and hence regulates mesenchymal stem cell (MSC) differentiation and bone regeneration. Tissue differentiation was predicted using a previously developed algorithm which assumed that MSC fate is governed by oxygen tension and substrate stiffness. This model was updated based on the hypothesis that cell death, chondrocyte hypertrophy and endochondral ossification are regulated by oxygen availability. To test this, the updated model was used to simulate the time course of normal fracture healing, where it successfully predicted the observed quantity and spatial distribution of bone and cartilage at 10 and 20 days post-fracture (dpf). It also predicted the ratio of cartilage which had become hypertrophic at 10 dpf. Following this, three models of fracture healing with increasing levels of angiogenic impairment were developed. Under mild impairment, the model predicted experimentally observed reductions in hypertrophic cartilage at 10 dpf as well as the persistence of cartilage at 20 dpf. Models of more severe impairment predicted apoptosis and the development of fibrous tissue. These results provide insight into how factors specific to an ischemic callus regulate tissue regeneration and provide support for the hypothesis that chondrocyte hypertrophy and endochondral ossification during tissue regeneration are inhibited by low oxygen.

Keywords

Stem cell differentiation Finite element analysis  Fracture healing Endochondral ossification Oxygen  Angiogenic impairment 

Notes

Acknowledgments

Funding was provided by a European Research Council Starter Grant (StemRepair No. 258463).

Supplementary material

10237_2016_759_MOESM1_ESM.pdf (2.4 mb)
Supplementary material 1 (pdf 2495 KB)

References

  1. Alierta JA, Perez MA, Garcia-Aznar JM (2014) An interface finite element model can be used to predict healing outcome of bone fractures. J Mech Behav Biomed Mater 29:328–338. doi: 10.1016/j.jmbbm.2013.09.023 CrossRefGoogle Scholar
  2. Appeddu PA, Shur BD (1994) Molecular analysis of cell surface fi-1, 4-galactosyltransferase function during cell migration. Proc Natl Acad Sci USA 91(March):2095–2099CrossRefGoogle Scholar
  3. Bahney C, Hu D, Ferro F, Taylor A, Miclau T, Marcucio R (2014) Transdifferentiation of hypertrophic chondrocytes during endochondral bone repair by activation of pluripotent stem cell programs. J Fed Am Soc Exp Biol 28(1 Supplement):216.1Google Scholar
  4. Betts DC, MÃller R, (2014) Mechanical regulation of bone regeneration: theories, models, and experiments. Front Endocrinol 5(December):1–14. doi: 10.3389/fendo.2014.00211, http://journal.frontiersin.org/article/10.3389/fendo.2014.00211/abstract
  5. Boerckel JD, Uhrig BA, Willett NJ, Huebsch N, Guldberg RE (2011) Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc Natl Acad Sci USA 108(37):E674–E680. doi: 10.1073/pnas.1107019108, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3174614&tool=pmcentrez&rendertype=abstract
  6. Brinker MR, Bailey DE Jr (1997) Fracture healing in tibia fractures with an associated vascular injury ovid. J Trauma Inj Infect Crit Care 42(1):11–19CrossRefGoogle Scholar
  7. Brueton R, Brookes M, Heatley FW (1990) The vascular repair of an experimental osteotomy held in an external fixator. Clin Orthop Relat Res 257(10):286–304Google Scholar
  8. Burke D, Dishowitz M, Sweetwyne M, Miedel E, Hankenson KD, Kelly DJ (2013) The role of oxygen as a regulator of stem cell fate during fracture repair in TSP2-null mice. J Orthop Res 31(10):1585–1596. doi: 10.1002/jor.22396, http://www.ncbi.nlm.nih.gov/pubmed/23775935
  9. Burke DP, Kelly DJ (2012) Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model. PLoS One 7(7):e40737. doi: 10.1371/journal.pone.0040737, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3404068&tool=pmcentrez&rendertype=abstract
  10. Burke DP, Kelly DJ (2016) A mechanobiological model of endothelial cell migration and proliferation. Comput Methods Biomech Biomed Eng 19(1):74–83Google Scholar
  11. Burke DP, Khayyeri H, Kelly DJ (2014) Substrate stiffness and oxygen availability as regulators of mesenchymal stem cell differentiation within a mechanically loaded bone chamber. Biomech Model mechanobiol. doi: 10.1007/s10237-014-0591-7, http://www.ncbi.nlm.nih.gov/pubmed/24832965
  12. Carlier A, Geris L, Gastel NV, Carmeliet G, Oosterwyck HV (2015) Oxygen as a critical determinant of bone fracture healing A multiscale model. J Theor Biol 365:247–264. doi: 10.1016/j.jtbi.2014.10.012 MathSciNetCrossRefMATHGoogle Scholar
  13. Carter DR, Blenman PR, Beaupré GS (1988) Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res 6(5):736–748. doi: 10.1002/jor.1100060517 CrossRefGoogle Scholar
  14. Carter DR, Beaupre G, Giori N, Helms J (1998) Mechanobiology of skeletal regeneration. Clin Orthopa Relat Res 355(Suppl):S41–55CrossRefGoogle Scholar
  15. Checa S, Prendergast PJ (2009) A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann Biomed Eng 37(1):129–45. doi: 10.1007/s10439-008-9594-9, http://www.ncbi.nlm.nih.gov/pubmed/19011968
  16. Chen G, Niemeyer F, Wehner T, Simon U, Ma Schuetz, Pearcy MJ, Claes LE (2009) Simulation of the nutrient supply in fracture healing. J Biomech 42(15):2575–2583. doi: 10.1016/j.jbiomech.2009.07.010, http://www.ncbi.nlm.nih.gov/pubmed/19660757
  17. Cicione C, Muiños López E, Hermida-Gómez T, Fuentes-Boquete I, Díaz-Prado S, Blanco FJ (2013) Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int 232896. doi: 10.1155/2013/232896, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3777136&tool=pmcentrez&rendertype=abstract
  18. Claes LE, Heigele Ca, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355(Suppl):S132–S147. http://www.ncbi.nlm.nih.gov/pubmed/9917634
  19. Duvall CL, Taylor WR, Weiss D, Guldberg RE (2004) Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury. Am J Physiol Heart Circ Physiol 287(1):H302–H310. doi: 10.1152/ajpheart.00928.2003 CrossRefGoogle Scholar
  20. Epari DR, Lienau J, Schell H, Witt F, Duda GN (2008) Pressure, oxygen tension and temperature in the periosteal callus during bone healing—an in vivo study in sheep. Bone 43(4):734–739. doi: 10.1016/j.bone.2008.06.007, http://www.ncbi.nlm.nih.gov/pubmed/18634913
  21. Gawlitta D, van Rijen M, Schrijver E, Alblas J, Dhert W (2012) Hypoxia impedes hypertrophic chondrogenesis of human multipotent stromal cells. Tissue Eng A 18(19–20):1957–1966CrossRefGoogle Scholar
  22. Geris L, Schugart R, Van Oosterwyck H (2010) In silico design of treatment strategies in wound healing and bone fracture healing. Philos Trans Ser A Math Phys Eng Sci 368(1920):2683–2706. doi: 10.1098/rsta.2010.0056, http://www.ncbi.nlm.nih.gov/pubmed/20439269
  23. Geris L, Sloten JV, Van Oosterwyck H (2010b) Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech Model Mechanobiol 9(6):713–724. doi: 10.1007/s10237-010-0208-8, http://www.ncbi.nlm.nih.gov/pubmed/20333537
  24. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88(5):873–884. doi: 10.1002/jcb.10435, http://www.ncbi.nlm.nih.gov/pubmed/12616527
  25. Hershey D, Karhan T (1968) Diffusion coefficients for oxygen transport in whole blood. AIChE 14(6):969–972CrossRefGoogle Scholar
  26. Heywood HK, Knight MM, Lee DA (2010) Both superficial and deep zone articular chondrocyte subpopulations exhibit the Crabtree effect but have different basal oxygen consumption rates. J Cell Physiol 223(3):630–639. doi: 10.1002/jcp.22061, http://www.ncbi.nlm.nih.gov/pubmed/20143333
  27. Holden C (1972) The role of blood supply to soft tissue in the healing of diaphyseal fractures. An experimental study. J Bone Joint Surg Am 54(5):993–1000Google Scholar
  28. Hori RY, Lewis JL (1982) Mechanical properties of the fibrous tissue found at the bone-cement interface following total joint replacement. J Biomed Mater Res 16(6):911–927. doi: 10.1002/jbm.820160615, http://www.ncbi.nlm.nih.gov/pubmed/7174716
  29. Isaksson H, van Donkelaar CC, Huiskes R, Ito K (2008) A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J Theor Biol 252(2):230–46. doi: 10.1016/j.jtbi.2008.01.030, http://www.ncbi.nlm.nih.gov/pubmed/18353374
  30. Keramaris NC, Calori GM, Nikolaou VS, Schemitsch EH, Giannoudis PV (2008) Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 39(Suppl 2):S45–S57. doi: 10.1016/S0020-1383(08)70015-9, http://www.ncbi.nlm.nih.gov/pubmed/18804573
  31. Lacroix D, Prendergast PJ, Li G, Marsh D (2002) Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput 40(1):14–21, http://www.ncbi.nlm.nih.gov/pubmed/11954702
  32. Leijten J, Georgi N, Moreira Teixeira L, van Blitterswijk CA, Post JN, Karperien M, (2014) Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1410977111, http://www.ncbi.nlm.nih.gov/pubmed/25205812
  33. Leijten JCH, Teixeira LSM, Landman EBM, van Blitterswijk CA, Karperien M (2012) Hypoxia inhibits hypertrophic differentiation and endochondral ossification in explanted tibiae. PLoS one 7(11):e49896. doi: 10.1371/journal.pone.0049896, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3503827&tool=pmcentrez&rendertype=abstract
  34. Lu C, Miclau T, Hu D, Marcucio RS, Al LUET (2007) Ischemia leads to delayed union during fracture healing: a mouse model. J Orthop Res 25(1):51–61. doi: 10.1002/jor CrossRefGoogle Scholar
  35. Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40(1):46–62. doi: 10.1016/j.biocel.2007.06.009, http://www.ncbi.nlm.nih.gov/pubmed/17659995
  36. Matsumoto T, Yung Y, Fischbach C, Kong H, Nakaoka R, Mooney D (2007) Mechanical strain regulates endothelial cell patterning in-vitro. Tissue Eng 13(1):207–217CrossRefGoogle Scholar
  37. Menon P, Yin G, Smolock EM, Zuscik MJ, Yan C, Berk BC (2010) GPCR kinase 2 interacting protein 1 (GIT1) regulates osteoclast function and bone mass. J Cell Physiol 225(3):777–785. doi: 10.1002/jcp.22282 CrossRefGoogle Scholar
  38. Miedel E, Dishowitz MI, Myers MH, Dopkin D, Yu YY, Miclau TS, Marcucio R, Ahn J, Hankenson KD (2013) Disruption of thrombospondin-2 accelerates ischemic fracture healing. J Orthop Res 31(6):935–943. doi: 10.1002/jor.22302, http://www.ncbi.nlm.nih.gov/pubmed/23280580
  39. Mosheiff R, Cordey J, Rahn BA, Perren SM, Stein H (1996) The vascular supply to bone in distraction osteoneogenesis: an experimental study. J Bone Joint Surg Br 78(3):497–498Google Scholar
  40. Pattappa G, Heywood HK, de Bruijn JD, Lee DA (2011) The metabolism of human mesenchymal stem cells during proliferation and differentiation. J Cell Physiol 226(10):2562–2570. doi: 10.1002/jcp.22605, http://www.ncbi.nlm.nih.gov/pubmed/21792913
  41. Pérez MA, Prendergast PJ (2007) Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. J Biomech 40(10):2244–2253. doi: 10.1016/j.jbiomech.2006.10.020, http://www.ncbi.nlm.nih.gov/pubmed/17173925
  42. Prasad J, Wiater BP, Nork SE, Bain SD, Gross TS (2010) Characterizing gait induced normal strains in a murine tibia cortical bone defect model. J Biomech 43(14):2765–2770. doi: 10.1016/j.jbiomech.2010.06.030, http://www.ncbi.nlm.nih.gov/pubmed/20674920
  43. Prendergast PJ (1997) Review Paper Finite element models in tissue mechanics and orthopaedic implant design. Clin Biomech 12(6):343–366CrossRefGoogle Scholar
  44. Sengers BG, van Donkelaar CC, Oomens CWJ, Baaijens FPT (2005) Computational study of culture conditions and nutrient supply in cartilage tissue engineering. Biotechnol Prog 21(4):1252–1261. doi: 10.1021/bp0500157, http://www.ncbi.nlm.nih.gov/pubmed/16080709
  45. Sheehy EJ, Buckley CT, Kelly DJ (2012) Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells. Biochem Biophysi Res Commun 417(1):305–310. doi: 10.1016/j.bbrc.2011.11.105, http://www.ncbi.nlm.nih.gov/pubmed/22155244
  46. Shefelbine SJ, Augat P, Claes L, Simon U (2005) Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J Biomech 38(12):2440–2450. doi: 10.1016/j.jbiomech.2004.10.019, http://www.ncbi.nlm.nih.gov/pubmed/16214492
  47. Taylor DK, Meganck JA, Terkhorn S, Rajani R, Naik A, Keefe RJO, Goldstein SA, Hankenson KD (2009) Thrombospondin-2 Influences the proportion of cartilage and bone during fracture healing. J Bone Miner Res 24(6):1043–1054. doi: 10.1359/JBMR.090101 CrossRefGoogle Scholar
  48. Vetter A, Witt F, Sander O, Duda GN, Weinkamer R (2012) The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech Model Mechanobiol 11(1–2):147–160. doi: 10.1007/s10237-011-0299-x
  49. Wallace AL, Draper ERC, Strachan RK, Mccarthy ID, Hughes SPF (1991) The effect of devascularisation upon early bone healing in dynamic external fixation. J Bone Joint Surg 73(5):819–825Google Scholar
  50. Yin G, Sheu TJ, Menon P, Pang J, Ho HC, Shi S, Xie C, Smolock E, Yan C, Zuscik MJ, Berk BC (2014) Impaired angiogenesis during fracture healing in GPCR kinase 2 interacting protein-1 (GIT1) knock out mice. PLoS One 9(2):e89127. doi: 10.1371/journal.pone.0089127, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3929643&tool=pmcentrez&rendertype=abstract
  51. Zhu M, Feng Q, Bian L (2014) Differential effect of hypoxia on human mesenchymal stem cell chondrogenesis and hypertrophy in hyaluronic acid hydrogels. Acta Biomater 10(3):1333–1340. doi: 10.1016/j.actbio.2013.12.015, http://www.ncbi.nlm.nih.gov/pubmed/24342044
  52. Zhu W, Chen J, Cong X, Hu S, Chen X (2006) Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells 24(2):416–425. doi: 10.1634/stemcells.2005-0121 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Adam OReilly
    • 1
    • 2
  • Kurt D. Hankenson
    • 3
    • 4
  • Daniel J. Kelly
    • 1
    • 2
    • 5
  1. 1.Trinity Centre for Bioengineering, Trinity Biomedical SciencesTrinity College DublinDublinIreland
  2. 2.Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College DublinDublinIreland
  3. 3.Department of Small Animal Clinical Sciences, College of Veterinary MedicineMichigan State UniversityEast LansingUSA
  4. 4.Department of Orthopaedic Surgery, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College DublinDublinIreland

Personalised recommendations