Biomechanics and Modeling in Mechanobiology

, Volume 15, Issue 4, pp 947–963 | Cite as

Multiscale evaluation of cellular adhesion alteration and cytoskeleton remodeling by magnetic bead twisting

  • Daniel IsabeyEmail author
  • Gabriel Pelle
  • Sofia André Dias
  • Mathieu Bottier
  • Ngoc-Minh Nguyen
  • Marcel Filoche
  • Bruno Louis
Original Paper


Cellular adhesion forces depend on local biological conditions meaning that adhesion characterization must be performed while preserving cellular integrity. We presently postulate that magnetic bead twisting provides an appropriate stress, i.e., basically a clamp, for assessment in living cells of both cellular adhesion and mechanical properties of the cytoskeleton. A global dissociation rate obeying a Bell-type model was used to determine the natural dissociation rate (\(K_\mathrm{off}^0\)) and a reference stress (\(\sigma _c\)). These adhesion parameters were determined in parallel to the mechanical properties for a variety of biological conditions in which either adhesion or cytoskeleton was selectively weakened or strengthened by changing successively ligand concentration, actin polymerization level (by treating with cytochalasin D), level of exerted stress (by increasing magnetic torque), and cell environment (by using rigid and soft 3D matrices). On the whole, this multiscale evaluation of the cellular and molecular responses to a controlled stress reveals an evolution which is consistent with stochastic multiple bond theories and with literature results obtained with other molecular techniques. Present results confirm the validity of the proposed bead-twisting approach for its capability to probe cellular and molecular responses in a variety of biological conditions.


Integrin-RGD binding Dissociation rate Multiple bonds Clamp Viscoelastic model 



The authors wish to thank Pr. J.B. Grotberg for long and fruitful discussions.

Supplementary material

10237_2015_734_MOESM1_ESM.pdf (156 kb)
Supplementary material 1 (pdf 156 KB)


  1. Akiyama SK, Yamada KM (1985) The interaction of plasma fibronectin with fibroblastic cells in suspension. J Biol Chem 260:4492–4500Google Scholar
  2. Balland M et al (2006) Power laws in microrheology experiments on living cells: comparative analysis and modeling. Phys Rev E Stat Nonlin Soft Matter Phys 74:021911CrossRefGoogle Scholar
  3. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627CrossRefGoogle Scholar
  4. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annual review of cell biology 4:487–525. doi: 10.1146/annurev.cb.04.110188.002415 CrossRefGoogle Scholar
  5. Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:39–48CrossRefGoogle Scholar
  6. Coussen F, Choquet D, Sheetz MP, Erickson HP (2002) Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation. J Cell Sci 115:2581–2590Google Scholar
  7. Cukierman E, Pankov R, Yamada KM (1998) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14:633–639CrossRefGoogle Scholar
  8. Evans E (1998) Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discuss:1-16Google Scholar
  9. Evans E (2001) Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30:105–128CrossRefGoogle Scholar
  10. Evans E, Kinoshita K (2007) Using force to probe single-molecule receptor-cytoskeletal anchoring beneath the surface of a living cell. Methods Cell Biol 83:373–396CrossRefGoogle Scholar
  11. Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555CrossRefGoogle Scholar
  12. Evans E, Ritchie K (1999) Strength of a weak bond connecting flexible polymer chains. Biophys J 76:2439–2447. doi: 10.1016/S0006-3495(99)77399-6 CrossRefGoogle Scholar
  13. Fabry B, Maksym G, Hubmayr R, Butler J, Fredberg J (1999) Implications of heterogeneous bead behavior on cell mechanical properties measured with magnetic twisting cytometry. J Magn Magn Mater 194:120–125CrossRefGoogle Scholar
  14. Fabry B et al (2003) Time scale and other invariants of integrative mechanical behavior in living cells. Phys Rev E Stat Nonlin Soft Matter Phys 68:041914CrossRefGoogle Scholar
  15. Féréol S et al (2006) Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties. Cell Motil Cytoskeleton 63:321–340CrossRefGoogle Scholar
  16. Féréol S et al (2009) Prestress and adhesion site dynamics control cell sensitivity to extracellular stiffness. Biophys J 96:2009–2022CrossRefGoogle Scholar
  17. Féréol S, Fodil R, Pelle G, Louis B, Isabey D (2008) Cell mechanics of alveolar epithelial cells (AECs) and macrophages (AMs). Respir Physiol Neurobiol 163:3–16CrossRefGoogle Scholar
  18. Friedl P, Brocker EB (2000) The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci CMLS 57:41–64CrossRefGoogle Scholar
  19. Fung YC (ed) (1981) Biomechanics; mechanical properties of living tissues, vol 1. Springer, University of California, San DiegoGoogle Scholar
  20. Gallant ND, Michael KE, Garcia AJ (2005) Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol Biol Cell 16:4329–4340. doi: 10.1091/mbc.E05-02-0170 CrossRefGoogle Scholar
  21. Ingber DE (1997) Integrins, tensegrity, and mechanotransduction. Gravit Space Biol Bull 10:49–55Google Scholar
  22. Isabey D, Féréol S, Caluch A, Fodil R, Louis B, Pelle G (2013) Force distribution on multiple bonds controls the kinetics of adhesion in stretched cells. J Biomech 46:307–313. doi: 10.1016/j.jbiomech.2012.10.039 CrossRefGoogle Scholar
  23. Janmey P (1995) Cell membranes and the cytoskeleton. In: Sackmann RLAE (ed) Handbook of biological physics, vol 1., pp 805-849, Elsevier Science B.VGoogle Scholar
  24. Jiang H, Grinnell F (2005) Cell-matrix entanglement and mechanical anchorage of fibroblasts in three-dimensional collagen matrices. Mol Biol Cell 16:5070–5076. doi: 10.1091/mbc.E05-01-0007 CrossRefGoogle Scholar
  25. Kokkoli E, Ochsenhirt SE, Tirrell M (2004) Collective and single-molecule interactions of alpha5beta1 integrins. Langmuir 20:2397–2404CrossRefGoogle Scholar
  26. Lagunas A, Comelles J, Martinez E, Prats-Alfonso E, Acosta GA, Albericio F, Samitier J (2012) Cell adhesion and focal contact formation on linear RGD molecular gradients: study of non-linear concentration dependence effects. Nanomed Nanotechnol Biol Med 8:432–439. doi: 10.1016/j.nano.2011.08.001 CrossRefGoogle Scholar
  27. Lauffenburger D, Linderman J (1993) Models for binding, trafficking, and signaling. In: Receptors, pp 0-362, Oxford University Press, New YorkGoogle Scholar
  28. Laurent VM, Fodil R, Canadas P, Féréol S, Louis B, Planus E, Isabey D (2003) Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting. Ann Biomed Eng 31:1263–1278CrossRefGoogle Scholar
  29. Li F, Redick SD, Erickson HP, Moy VT (2003) Force measurements of the alpha5beta1 integrin-fibronectin interaction. Biophys J 84:1252–1262. doi: 10.1016/S0006-3495(03)74940-6 CrossRefGoogle Scholar
  30. Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193CrossRefGoogle Scholar
  31. Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119:508–518CrossRefGoogle Scholar
  32. Mijailovich SM, Kojic M, Zivkovic M, Fabry B, Fredberg JJ (2002) A finite element model of cell deformation during magnetic bead twisting. J Appl Physiol 93:1429–1436CrossRefGoogle Scholar
  33. Miyamoto S, Akiyama SK, Yamada KM (1995) Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267:883–885CrossRefGoogle Scholar
  34. Mizuno D, Tardin C, Schmidt CF, Mackintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315:370–373CrossRefGoogle Scholar
  35. Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N (2008) Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci USA 105:6626–6631. doi: 10.1073/pnas.0711704105 CrossRefGoogle Scholar
  36. Noy A, Friddle RW (2013) Practical single molecule force spectroscopy: how to determine fundamental thermodynamic parameters of intermolecular bonds with an atomic force microscope. Methods 60:142–150. doi: 10.1016/j.ymeth.2013.03.014 CrossRefGoogle Scholar
  37. Ohayon J, Tracqui P, Fodil R, Féréol S, Laurent VM, Planus E, Isabey D (2004) Analysis of nonlinear responses of adherent epithelial cells probed by magnetic bead twisting: a finite element model based on a homogenization approach. J Biomech Eng 126:685–698CrossRefGoogle Scholar
  38. Pierres A, Benoliel AM, Bongrand P (1996) Measuring bonds between surface-associated molecules. J Immunol Methods 196:105–120CrossRefGoogle Scholar
  39. Poh YC, Shevtsov SP, Chowdhury F, Wu DC, Na S, Dundr M, Wang N (2012) Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells. Nat Commun 3:866. doi: 10.1038/ncomms1873 CrossRefGoogle Scholar
  40. Pommerenke H, Schreiber E, Durr F, Nebe B, Hahnel C, Moller W, Rychly J (1996) Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 70:157–164Google Scholar
  41. Potard US, Butler JP, Wang N (1997) Cytoskeletal mechanics in confluent epithelial cells probed through integrins and E-cadherins. Am J Physiol 272:C1654–1663Google Scholar
  42. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715. doi: 10.1146/annurev.cellbio.12.1.697
  43. Schoen I, Pruitt BL, Vogel V (2013) The Yin-Yang of rigidity sensing: how forces and mechanical properties regulate the cellular response to materials. Ann Rev Mater Res 43:589–618. doi: 10.1146/annurev-matsci-062910-100407 CrossRefGoogle Scholar
  44. Stricker J, Aratyn-Schaus Y, Oakes PW, Gardel ML (2011) Spatiotemporal constraints on the force-dependent growth of focal adhesions. Biophys J 100:2883–2893. doi: 10.1016/j.bpj.2011.05.023 CrossRefGoogle Scholar
  45. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100:1484–1489. doi: 10.1073/pnas.0235407100 CrossRefGoogle Scholar
  46. Trepat X, Grabulosa M, Puig F, Maksym GN, Navajas D, Farré R (2004) Viscoelasticity of human alveolar epithelial cells subjected to stretch. Am J Physiol Lung Cell Mol Physiol 287:L1025–1034Google Scholar
  47. Tsukasaki Y, Kitamura K, Shimizu K, Iwane AH, Takai Y, Yanagida T (2007) Role of multiple bonds between the single cell adhesion molecules, nectin and cadherin, revealed by high sensitive force measurements. J Mol Biol 367:996–1006. doi: 10.1016/j.jmb.2006.12.022 CrossRefGoogle Scholar
  48. Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD (1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 277:L167–173Google Scholar
  49. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton [see comments]. Science 260:1124–1127CrossRefGoogle Scholar
  50. Wendling S, Planus E, Laurent V, Barbe L, Mary A, Oddou C, Isabey D (2000) Role of cellular tone and microenvironmental conditions on cytoskeleton stiffness assessed by tensegrity model. Eur Phys J Appl Phys 9:51–62CrossRefGoogle Scholar
  51. Williams PM (2003) Analytical descriptions of dynamic force spectroscopy: behaviour of multiple connections. Anal Chim Acta 479:107–115CrossRefGoogle Scholar
  52. Zhang X, Moy VT (2003) Cooperative adhesion of ligand-receptor bonds. Biophys Chem 104:271–278CrossRefGoogle Scholar
  53. Zhu C, Bao G, Wang N (2000) Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu Rev Biomed Eng 2:189–226. doi: 10.1146/annurev.bioeng.2.1.189 CrossRefGoogle Scholar
  54. Zhu C, Yago T, Lou J, Zarnitsyna VI, McEver RP (2008) Mechanisms for flow-enhanced cell adhesion. Ann Biomed Eng 36:604–621CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Daniel Isabey
    • 1
    Email author
  • Gabriel Pelle
    • 1
    • 2
  • Sofia André Dias
    • 1
  • Mathieu Bottier
    • 1
  • Ngoc-Minh Nguyen
    • 1
  • Marcel Filoche
    • 1
    • 3
  • Bruno Louis
    • 1
  1. 1.Inserm, U955, Équipe 13, Biomécanique and Appareil Respiratoire: une approche multi-échelle, UMR S955, CNRS, ERL 7240Université Paris Est, UPECCréteil CedexFrance
  2. 2.APHP, Groupe Hospitalier H. Mondor A. Chenevier, Service des Explorations FonctionnellesCréteil CedexFrance
  3. 3.Physique de la Matière Condensée, Ecole Polytechnique, CNRSPalaiseauFrance

Personalised recommendations