Skip to main content
Log in

Multiscale evaluation of cellular adhesion alteration and cytoskeleton remodeling by magnetic bead twisting

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Cellular adhesion forces depend on local biological conditions meaning that adhesion characterization must be performed while preserving cellular integrity. We presently postulate that magnetic bead twisting provides an appropriate stress, i.e., basically a clamp, for assessment in living cells of both cellular adhesion and mechanical properties of the cytoskeleton. A global dissociation rate obeying a Bell-type model was used to determine the natural dissociation rate (\(K_\mathrm{off}^0\)) and a reference stress (\(\sigma _c\)). These adhesion parameters were determined in parallel to the mechanical properties for a variety of biological conditions in which either adhesion or cytoskeleton was selectively weakened or strengthened by changing successively ligand concentration, actin polymerization level (by treating with cytochalasin D), level of exerted stress (by increasing magnetic torque), and cell environment (by using rigid and soft 3D matrices). On the whole, this multiscale evaluation of the cellular and molecular responses to a controlled stress reveals an evolution which is consistent with stochastic multiple bond theories and with literature results obtained with other molecular techniques. Present results confirm the validity of the proposed bead-twisting approach for its capability to probe cellular and molecular responses in a variety of biological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akiyama SK, Yamada KM (1985) The interaction of plasma fibronectin with fibroblastic cells in suspension. J Biol Chem 260:4492–4500

    Google Scholar 

  • Balland M et al (2006) Power laws in microrheology experiments on living cells: comparative analysis and modeling. Phys Rev E Stat Nonlin Soft Matter Phys 74:021911

    Article  Google Scholar 

  • Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  Google Scholar 

  • Burridge K, Fath K, Kelly T, Nuckolls G, Turner C (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annual review of cell biology 4:487–525. doi:10.1146/annurev.cb.04.110188.002415

    Article  Google Scholar 

  • Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:39–48

    Article  Google Scholar 

  • Coussen F, Choquet D, Sheetz MP, Erickson HP (2002) Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation. J Cell Sci 115:2581–2590

    Google Scholar 

  • Cukierman E, Pankov R, Yamada KM (1998) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14:633–639

    Article  Google Scholar 

  • Evans E (1998) Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discuss:1-16

  • Evans E (2001) Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30:105–128

    Article  Google Scholar 

  • Evans E, Kinoshita K (2007) Using force to probe single-molecule receptor-cytoskeletal anchoring beneath the surface of a living cell. Methods Cell Biol 83:373–396

    Article  Google Scholar 

  • Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555

    Article  Google Scholar 

  • Evans E, Ritchie K (1999) Strength of a weak bond connecting flexible polymer chains. Biophys J 76:2439–2447. doi:10.1016/S0006-3495(99)77399-6

    Article  Google Scholar 

  • Fabry B, Maksym G, Hubmayr R, Butler J, Fredberg J (1999) Implications of heterogeneous bead behavior on cell mechanical properties measured with magnetic twisting cytometry. J Magn Magn Mater 194:120–125

    Article  Google Scholar 

  • Fabry B et al (2003) Time scale and other invariants of integrative mechanical behavior in living cells. Phys Rev E Stat Nonlin Soft Matter Phys 68:041914

    Article  Google Scholar 

  • Féréol S et al (2006) Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties. Cell Motil Cytoskeleton 63:321–340

    Article  Google Scholar 

  • Féréol S et al (2009) Prestress and adhesion site dynamics control cell sensitivity to extracellular stiffness. Biophys J 96:2009–2022

    Article  Google Scholar 

  • Féréol S, Fodil R, Pelle G, Louis B, Isabey D (2008) Cell mechanics of alveolar epithelial cells (AECs) and macrophages (AMs). Respir Physiol Neurobiol 163:3–16

    Article  Google Scholar 

  • Friedl P, Brocker EB (2000) The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci CMLS 57:41–64

    Article  Google Scholar 

  • Fung YC (ed) (1981) Biomechanics; mechanical properties of living tissues, vol 1. Springer, University of California, San Diego

    Google Scholar 

  • Gallant ND, Michael KE, Garcia AJ (2005) Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol Biol Cell 16:4329–4340. doi:10.1091/mbc.E05-02-0170

    Article  Google Scholar 

  • Ingber DE (1997) Integrins, tensegrity, and mechanotransduction. Gravit Space Biol Bull 10:49–55

    Google Scholar 

  • Isabey D, Féréol S, Caluch A, Fodil R, Louis B, Pelle G (2013) Force distribution on multiple bonds controls the kinetics of adhesion in stretched cells. J Biomech 46:307–313. doi:10.1016/j.jbiomech.2012.10.039

    Article  Google Scholar 

  • Janmey P (1995) Cell membranes and the cytoskeleton. In: Sackmann RLAE (ed) Handbook of biological physics, vol 1., pp 805-849, Elsevier Science B.V

  • Jiang H, Grinnell F (2005) Cell-matrix entanglement and mechanical anchorage of fibroblasts in three-dimensional collagen matrices. Mol Biol Cell 16:5070–5076. doi:10.1091/mbc.E05-01-0007

    Article  Google Scholar 

  • Kokkoli E, Ochsenhirt SE, Tirrell M (2004) Collective and single-molecule interactions of alpha5beta1 integrins. Langmuir 20:2397–2404

    Article  Google Scholar 

  • Lagunas A, Comelles J, Martinez E, Prats-Alfonso E, Acosta GA, Albericio F, Samitier J (2012) Cell adhesion and focal contact formation on linear RGD molecular gradients: study of non-linear concentration dependence effects. Nanomed Nanotechnol Biol Med 8:432–439. doi:10.1016/j.nano.2011.08.001

    Article  Google Scholar 

  • Lauffenburger D, Linderman J (1993) Models for binding, trafficking, and signaling. In: Receptors, pp 0-362, Oxford University Press, New York

  • Laurent VM, Fodil R, Canadas P, Féréol S, Louis B, Planus E, Isabey D (2003) Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting. Ann Biomed Eng 31:1263–1278

    Article  Google Scholar 

  • Li F, Redick SD, Erickson HP, Moy VT (2003) Force measurements of the alpha5beta1 integrin-fibronectin interaction. Biophys J 84:1252–1262. doi:10.1016/S0006-3495(03)74940-6

    Article  Google Scholar 

  • Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193

    Article  Google Scholar 

  • Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119:508–518

    Article  Google Scholar 

  • Mijailovich SM, Kojic M, Zivkovic M, Fabry B, Fredberg JJ (2002) A finite element model of cell deformation during magnetic bead twisting. J Appl Physiol 93:1429–1436

    Article  Google Scholar 

  • Miyamoto S, Akiyama SK, Yamada KM (1995) Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267:883–885

    Article  Google Scholar 

  • Mizuno D, Tardin C, Schmidt CF, Mackintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315:370–373

    Article  Google Scholar 

  • Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N (2008) Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci USA 105:6626–6631. doi:10.1073/pnas.0711704105

    Article  Google Scholar 

  • Noy A, Friddle RW (2013) Practical single molecule force spectroscopy: how to determine fundamental thermodynamic parameters of intermolecular bonds with an atomic force microscope. Methods 60:142–150. doi:10.1016/j.ymeth.2013.03.014

    Article  Google Scholar 

  • Ohayon J, Tracqui P, Fodil R, Féréol S, Laurent VM, Planus E, Isabey D (2004) Analysis of nonlinear responses of adherent epithelial cells probed by magnetic bead twisting: a finite element model based on a homogenization approach. J Biomech Eng 126:685–698

    Article  Google Scholar 

  • Pierres A, Benoliel AM, Bongrand P (1996) Measuring bonds between surface-associated molecules. J Immunol Methods 196:105–120

    Article  Google Scholar 

  • Poh YC, Shevtsov SP, Chowdhury F, Wu DC, Na S, Dundr M, Wang N (2012) Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells. Nat Commun 3:866. doi:10.1038/ncomms1873

    Article  Google Scholar 

  • Pommerenke H, Schreiber E, Durr F, Nebe B, Hahnel C, Moller W, Rychly J (1996) Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 70:157–164

    Google Scholar 

  • Potard US, Butler JP, Wang N (1997) Cytoskeletal mechanics in confluent epithelial cells probed through integrins and E-cadherins. Am J Physiol 272:C1654–1663

    Google Scholar 

  • Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715. doi:10.1146/annurev.cellbio.12.1.697

  • Schoen I, Pruitt BL, Vogel V (2013) The Yin-Yang of rigidity sensing: how forces and mechanical properties regulate the cellular response to materials. Ann Rev Mater Res 43:589–618. doi:10.1146/annurev-matsci-062910-100407

    Article  Google Scholar 

  • Stricker J, Aratyn-Schaus Y, Oakes PW, Gardel ML (2011) Spatiotemporal constraints on the force-dependent growth of focal adhesions. Biophys J 100:2883–2893. doi:10.1016/j.bpj.2011.05.023

    Article  Google Scholar 

  • Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100:1484–1489. doi:10.1073/pnas.0235407100

    Article  Google Scholar 

  • Trepat X, Grabulosa M, Puig F, Maksym GN, Navajas D, Farré R (2004) Viscoelasticity of human alveolar epithelial cells subjected to stretch. Am J Physiol Lung Cell Mol Physiol 287:L1025–1034

  • Tsukasaki Y, Kitamura K, Shimizu K, Iwane AH, Takai Y, Yanagida T (2007) Role of multiple bonds between the single cell adhesion molecules, nectin and cadherin, revealed by high sensitive force measurements. J Mol Biol 367:996–1006. doi:10.1016/j.jmb.2006.12.022

    Article  Google Scholar 

  • Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD (1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 277:L167–173

    Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton [see comments]. Science 260:1124–1127

    Article  Google Scholar 

  • Wendling S, Planus E, Laurent V, Barbe L, Mary A, Oddou C, Isabey D (2000) Role of cellular tone and microenvironmental conditions on cytoskeleton stiffness assessed by tensegrity model. Eur Phys J Appl Phys 9:51–62

    Article  Google Scholar 

  • Williams PM (2003) Analytical descriptions of dynamic force spectroscopy: behaviour of multiple connections. Anal Chim Acta 479:107–115

    Article  Google Scholar 

  • Zhang X, Moy VT (2003) Cooperative adhesion of ligand-receptor bonds. Biophys Chem 104:271–278

    Article  Google Scholar 

  • Zhu C, Bao G, Wang N (2000) Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu Rev Biomed Eng 2:189–226. doi:10.1146/annurev.bioeng.2.1.189

    Article  Google Scholar 

  • Zhu C, Yago T, Lou J, Zarnitsyna VI, McEver RP (2008) Mechanisms for flow-enhanced cell adhesion. Ann Biomed Eng 36:604–621

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Pr. J.B. Grotberg for long and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Isabey.

Additional information

For this research, we acknowledge receipt of grants from Agence Nationale de la Recherche: ANR no 2010-BLAN-1119-05 and from Fondation pour la Recherche Médicale: FRM programme Bio-Ingénierie pour la Santé 2014, DBS 201420140930771. Sofia André Dias is a PhD student supported by Agence Nationale de la Recherche et Technologies (ANRT) and Bertin Technologies, Mathieu Bottier is PhD student supported by INSIS CNRS 2013, Ngoc-Minh Nguyen is a postdoctoral student supported by ANR and FRM.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 156 KB)

Appendix

Appendix

To simplify the general solution given by Eq. (7), we consider N identical independent bonds working collectively and organized in two extreme cases of loading distribution, i.e., parallel where each attachment shares the same force, and zipper where all the force is experienced by a single leading edge attachment until failure when it is passed on the next.

For parallel:

$$\begin{aligned} T_\mathrm{off}(f)&= t_\mathrm{off}^0~\sum _{n=1}^N \left( \frac{1}{n}\exp \left( -\frac{f}{n f_\beta }\right) \right) \nonumber \\&\approx \left[ t_\mathrm{off}^0 \left( \frac{2f}{N f_\beta }\right) ^{-0.5} \exp \left( -\frac{f}{N f_\beta }\right) \right] _{N\ge 2, f\ne 0} \end{aligned}$$
(22)

For zipper:

$$\begin{aligned} T_\mathrm{off}(f) = t_\mathrm{off}^0\;\sum _{n=1}^N \left( \exp \left( -\frac{f}{f_\beta }\right) \right) = t_\mathrm{off}^0\;N\;\exp \left( -\frac{f}{f_\beta }\right) \end{aligned}$$
(23)

The series appearing in Eqs. (22) and  (23) have previously been proposed by  Evans (2001) and  Williams (2003). The analytical form in Eq. (23) has been initially given by Williams (2003) while that of Eq. (22) has been recently proposed by Isabey et al. (2013). Noteworthy, these analytical expressions describe overall lifetimes (conversely, the overall dissociation rate) suggesting that, to describe multiple bonds, a Bell-type model holds in very different conditions of loading \(K_\mathrm{off}(f) = K_\mathrm{off}^0 \exp \left( \displaystyle \frac{f}{f_c}\right) \) similar to Eq. (11).

For parallel bonds, the prefactor of the Bell-type model is given by:

$$\begin{aligned} K_\mathrm{off}^0&= k_\mathrm{off}^0~\left[ \sum _{n=1}^N \frac{1}{n}\right] ^{-1} \approx \left[ \frac{k_\mathrm{off}^0}{0.6 + \ln N}\right] _{f\,=\,0,N \ge 10} \nonumber \\ \text{ or } \quad K_\mathrm{off}^0&\approx k_\mathrm{off}^0 \left( \frac{2f}{N f_\beta }\right) _{f\ne 0, N\ge 2}^{0.5} \nonumber \\ \text{ and } \qquad f_c&= N f_\beta \end{aligned}$$
(24)

For zipper bonds:

$$\begin{aligned} K_\mathrm{off}^0 = \left[ \frac{k_\mathrm{off}^0}{N}\right] _{f\,=\,0} \qquad \text{ and } \qquad f_c = f_\beta \end{aligned}$$
(25)

Application of a force to such a complex bond system made of several uncooperative identical weak bonds exponentiates its dissociation. This behavior resembles the single bond behavior predicted by the Bell-type model (Evans 2001; Evans and Kinoshita 2007; Evans and Ritchie 1997). However, at given force, bond association dramatically decreases the rate of dissociation compared to the single bond. In parallel bonds with homogeneous force redistribution at each step, the global dissociation rate is exponentially decreased as the bond number increases (Eq. (24)). In zipper bonds, the natural dissociation rate decreases linearly as number of bonds N increase independently on force level (Eq. (25)), while exponent is unaffected by N.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isabey, D., Pelle, G., André Dias, S. et al. Multiscale evaluation of cellular adhesion alteration and cytoskeleton remodeling by magnetic bead twisting. Biomech Model Mechanobiol 15, 947–963 (2016). https://doi.org/10.1007/s10237-015-0734-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0734-5

Keywords

Navigation