Biomechanics and Modeling in Mechanobiology

, Volume 14, Issue 6, pp 1363–1378 | Cite as

Finite element implementation of a multiscale model of the human lens capsule

  • H. J. Burd
  • R. A. Regueiro
Original Paper


An axisymmetric finite element implementation of a previously described structural constitutive model for the human lens capsule (Burd in Biomech Model Mechanobiol 8(3):217–231, 2009) is presented. This constitutive model is based on a hyperelastic approach in which the network of collagen IV within the capsule is represented by an irregular hexagonal planar network of hyperelastic bars, embedded in a hyperelastic matrix. The paper gives a detailed specification of the model and the periodic boundary conditions adopted for the network component. Momentum balance equations for the network are derived in variational form. These balance equations are used to develop a nonlinear solution scheme to enable the equilibrium configuration of the network to be computed. The constitutive model is implemented within a macroscopic finite element framework to give a multiscale model of the lens capsule. The possibility of capsule wrinkling is included in the formulation. To achieve this implementation, values of the first and second derivatives of the strain energy density with respect to the in-plane stretch ratios need to be computed at the local, constitutive model, level. Procedures to determine these strain energy derivatives at equilibrium configurations of the network are described. The multiscale model is calibrated against previously published experimental data on isolated inflation and uniaxial stretching of ex vivo human capsule samples. Two independent example lens capsule inflation analyses are presented.


Multiscale Human lens capsule  Accommodation Collagen 



The mesh for the in situ capsule inflation analysis was generated by GS Wilde. The authors acknowledge the assistance provided by RI Barraquer, S Krag, H Martin and R Michael in providing numerical values of previously published experimental data. RAR gratefully acknowledges funding from the US Army Medical Research and Materiel Command (USAMRMC) grant W81XWH-10-1-1036, the US–UK Fulbright Commission, and the Royal Society International Exchanges Scheme.


  1. Agoram B, Barocas VH (2001) Coupled macroscopic and microscopic scale modeling of fibrillar tissues and tissue equivalents. J Biomech Eng 123:362–369CrossRefGoogle Scholar
  2. Burgess SA, Carter DA, Woolley DM (1992) Three-dimensional structure of type IV collagen in the mammalian lens capsule. J Struct Biol 108(1):6–13CrossRefGoogle Scholar
  3. Barraquer RI, Michael R, Abreu R, Lamarca J, Tresserra F (2006) Human lens capsule thickness as a function of age and location along the sagittal lens perimeter. Invest Ophthalmol Vis Sci 47(5):2053–2060CrossRefGoogle Scholar
  4. Barsotti R, Ligarò SS (2014) Static response of elastic inflated wrinkled membranes. Comput Mech 53(5):1001–1013MathSciNetCrossRefMATHGoogle Scholar
  5. Belaidi A, Pierscionek BK (2007) Modeling internal stress distributions in the human lens: can opponent theories coexist? J Vis 7(11):1–12CrossRefGoogle Scholar
  6. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, CambridgeMATHGoogle Scholar
  7. Bron AJ, Tripathi RC, Tripathi BJ (1997) Wolff’s anatomy of the eye and orbit. Chapman Hall, LondonGoogle Scholar
  8. Burd HJ, Judge SJ, Cross JA (2002) Numerical modelling of the accommodating lens. Vis Res 42(18):2235–2251CrossRefGoogle Scholar
  9. Burd HJ (2009) A structural constitutive model for the human lens capsule. Biomech Model Mechanobiol 8(3):217–231CrossRefGoogle Scholar
  10. Charman WN (2014) Developments in the correction of presbyopia II: surgical approaches. Ophthalmic Physiol Opt 34(4):397–426CrossRefGoogle Scholar
  11. D’Amore A, Amoroso N, Gottardi R, Hobson C, Carruthers C, Watkins S, Wagner WR and Sacks MS (2014) From single fiber to macro-level mechanics: a structural finite-element model for elastomeric fibrous biomaterials. J Mech Behav Biomed Mater 39:146–161Google Scholar
  12. Danysh BP, Duncan MK (2009) The lens capsule. Exp Eye Res 88(2):151–164CrossRefGoogle Scholar
  13. Fan R, Sacks MS (2014) Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J Biomech 47(9):2043–2054CrossRefGoogle Scholar
  14. Fisher RF (1969) Elastic constants of the human lens capsule. J Physiol 201(1):1–19CrossRefGoogle Scholar
  15. Fisher RF, Pettet BE (1972) The postnatal growth of the capsule of the human crystalline lens. J Anat 112(2):207–214Google Scholar
  16. Hermans EA, Dubbelman M, Van der Heijde GL, Heethaar RM (2006) Estimating the external force acting on the human eye lens during accommodation by finite element modelling. Vis Res 46(21):3642–3650CrossRefGoogle Scholar
  17. Hermans EA, Dubbelman M, Van der Heijde GL, Heethaar RM (2008) Change in the accommodative force on the lens of the human eye with age. Vis Res 48(1):119–126CrossRefGoogle Scholar
  18. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, LondonGoogle Scholar
  19. Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A Solids 21(3):441–463CrossRefMATHGoogle Scholar
  20. Krag S, Andreassen TT (2003) Mechanical properties of the human lens capsule. Prog Retin Eye Res 22(6):749–767CrossRefGoogle Scholar
  21. Krag S, Olsen T, Andreassen TT (1997) Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest Ophthalmol Vis Sci 38(2):357–363Google Scholar
  22. Ligarò SS, Barsotti R (2008) Equilibrium shapes of inflated inextensible membranes. Int J Solids Struct 45(21):5584–5598CrossRefMATHGoogle Scholar
  23. Martin H, Schmidt W, Schmitz KP, Schneider H, Guthoff R, Terwee T (2003) Material properties of the isolated human capsular bag. Curr Asp Hum Accommod II:127–133Google Scholar
  24. Oyster CW (1999) The human eye: structure and function. Sinauer, Sunderland, MAGoogle Scholar
  25. Pedrigi RM, David G, Dziezyc J, Humphrey JD (2007) Regional mechanical properties and stress analysis of the human anterior lens capsule. Vis Res 47(13):1781–1789CrossRefGoogle Scholar
  26. Rosen AM, Denham DB, Fernandez V, Borja D, Ho A, Manns F, Parel JM, Augusteyn RC (2006) In vitro dimensions and curvatures of human lenses. Vis Res 46(6–7):1002–1009CrossRefGoogle Scholar
  27. Schumacher S, Oberheide U, Fromm M, Ripken T, Ertmer W, Gerten G, Wegener A, Lubatschowski H (2009) Femtosecond laser induced flexibility change of human donor lenses. Vis Res 49(14):1853–1859Google Scholar
  28. Seshaiyer P, Humphrey JD (2003) A sub-domain inverse finite element characterization of hyperelastic membranes including soft tissues. J Biomech Eng 125(3):363–371CrossRefGoogle Scholar
  29. Stachs O, Martin H, Behrend D, Schmitz KP, Guthoff R (2006) Three-dimensional ultrasound biomicroscopy, environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation. Graefe’s Arch Clin Exp Ophthalmol 244(7):836–844CrossRefGoogle Scholar
  30. Stylianopoulos T, Barocas VH (2007a) Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J Biomech Eng 129(4):611–618CrossRefGoogle Scholar
  31. Stylianopoulos T, Barocas VH (2007b) Volume-averaging theory for the study of the mechanics of collagen networks. Comput Methods Appl Mech Eng 196(31–32):2981–2990MathSciNetCrossRefMATHGoogle Scholar
  32. Verron E, Marckmann G (2003) Inflation of elastomeric circular membranes using network constitutive equations. Int J Non Linear Mech 38(8):1221–1235CrossRefMATHGoogle Scholar
  33. Weeber HA, Eckert G, Pechhold W, Van der Heijde GL (2007) Stiffness gradient in the crystalline lens. Graefes Arch Clin Exp Ophthalmol 245(9):1357–1366CrossRefGoogle Scholar
  34. Wilde GS, Burd HJ, Judge SJ (2012) Shear modulus data for the human lens determined from a spinning lens test. Exp Eye Res 97(1):36–48CrossRefGoogle Scholar
  35. Wriggers P, Taylor RL (1990) A fully non-linear axisymmetrical membrane element for rubber-like materials. Eng Comput 7:303–310CrossRefGoogle Scholar
  36. Ziebarth NM, Manns F, Uhlhorn SR, Venkatraman AS, Parel JM (2005) Noncontact optical measurement of lens capsule thickness in human, monkey, and rabbit postmortem eyes. Invest Ophthalmol Vis Sci 46(5):1690–1697CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Engineering ScienceOxford UniversityOxfordUK
  2. 2.Department of Civil, Environmental, and Architectural EngineeringUniversity of Colorado BoulderBoulderUSA

Personalised recommendations