Biomechanics and Modeling in Mechanobiology

, Volume 15, Issue 1, pp 195–204 | Cite as

The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait

  • Vickie B. ShimEmail author
  • Thor F. Besier
  • David G. Lloyd
  • Kumar Mithraratne
  • Justin F. Fernandez
Original Paper


This study presents an evaluation of the role that cartilage fibre ‘split line’ orientation plays in informing femoral cartilage stress patterns. A two-stage model is presented consisting of a whole knee joint coupled to a tissue-level cartilage model for computational efficiency. The whole joint model may be easily customised to any MRI or CT geometry using free-form deformation. Three ‘split line’ patterns (medial–lateral, anterior–posterior and random) were implemented in a finite element model with constitutive properties referring to this ‘split line’ orientation as a finite element fibre field. The medial–lateral orientation was similar to anatomy and was derived from imaging studies. Model predictions showed that ‘split lines’ are formed along the line of maximum principal strains and may have a biomechanical role of protecting the cartilage by limiting the cartilage deformation to the area of higher cartilage thickness.


Cartilage fibre orientation Finite element analysis  Cartilage stress distribution Split lines 



This work was funded by the Health Research Council Emerging Researcher First Grant (11/496) and Wishbone Trust research grant.


  1. Abramson SB, Attur M, Yazici Y (2006) Prospects for disease modification in osteoarthritis. Nat Clin Pract Rheumatol 2:304–312CrossRefGoogle Scholar
  2. Accident Compensation Corporation (2003) The diagnosis and management of Soft tissue knee injuries: internal derangement.
  3. Anderson AE, Peters CL, Tuttle BD, Weiss JA (2005) Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J Biomech Eng 127:364–373CrossRefGoogle Scholar
  4. Aspden RM, Hickey DS, Hukins DW (1981) Determination of collagen fibril orientation in the cartilage of vertebral end plate. Connect Tissue Res 9:83–87CrossRefGoogle Scholar
  5. Ateshian GA, Lai WM, Zhu WB, Mow VC (1994) An asymptotic solution for the contact of two biphasic cartilage layers. J Biomech 27:1347–1360CrossRefGoogle Scholar
  6. Below S, Arnoczky SP, Dodds J, Kooima C, Walter N (2002) The split-line pattern of the distal femur: a consideration in the orientation of autologous cartilage grafts. Arthroscopy 18:613–617CrossRefGoogle Scholar
  7. Besier TF, Gold GE, Beaupre GS, Delp SL (2005) A modeling framework to estimate patellofemoral joint cartilage stress in vivo. Med Sci Sports Exerc 37:1924–1930CrossRefGoogle Scholar
  8. Bollen SR, Scott BW (1996) Rupture of the anterior cruciate ligament—a quiet epidemic? Injury 27:407–409CrossRefGoogle Scholar
  9. Cohen B, Gardiner TR, Ateshian (1993) The influence of transverse isotropy on cartilage indentation behavior: a study of the human humeral head. Trans Orthop Res Soc 18:185Google Scholar
  10. Dalstra M, Huiskes R, Odgaard A, van Erning L (1993) Mechanical and textural properties of pelvic trabecular bone. J Biomech 26:523–535CrossRefGoogle Scholar
  11. Donahue TL, Hull ML, Rashid MM, Jacobs CR (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng 124:273–280CrossRefGoogle Scholar
  12. Fernandez JW, Mithraratne P, Thrupp SF, Tawhai MH, Hunter PJ (2004) Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech Model Mechanobiol 2:139–155. doi: 10.1007/s10237-003-0036-1 CrossRefGoogle Scholar
  13. Foy MA (2001) Medicolegal reporting in orthopaedic trauma. Churchil Livingstone, EdinburghGoogle Scholar
  14. Garcia JJ, Altiero NJ, Haut RC (1998) An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load. J Biomech Eng 120:608–613CrossRefGoogle Scholar
  15. Gu KB, Li LP (2011) A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci. Med Eng Phys 33:497–503. doi: 10.1016/j.medengphy.2010.12.001 CrossRefGoogle Scholar
  16. Henak CR, Anderson AE, Weiss JA (2013) Subject-specific analysis of joint contact mechanics: application to the study of osteoarthritis and surgical planning. J Biomech Eng 135:021003. doi: 10.1115/1.4023386 CrossRefGoogle Scholar
  17. Hunter PJ, Borg TK (2003) Integration from proteins to organs: the Physiome Project Nature reviews. Mol Cell Biol 4:237–243. doi: 10.1038/nrm1054 Google Scholar
  18. Kamalanathan S, Broom ND (1993) The biomechanical ambiguity of the articular surface. J Anat 183(Pt 3):567–578Google Scholar
  19. LeRoux MA, Setton LA (2002) Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus. J Biomech Eng 124:315–321CrossRefGoogle Scholar
  20. Li G, Lopez O, Rubash H (2001) Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. J Biomech Eng 123:341–346CrossRefGoogle Scholar
  21. Li LP, Cheung JT, Herzog W (2009) Three-dimensional fibril-reinforced finite element model of articular cartilage. Med Biol Eng Comput 47:607–615. doi: 10.1007/s11517-009-0469-5 CrossRefGoogle Scholar
  22. Liu F, Kozanek M, Hosseini A, Van de Velde SK, Gill TJ, Rubash HE, Li G (2010) In vivo tibiofemoral cartilage deformation during the stance phase of gait. J Biomech 43:658–665. doi: 10.1016/j.jbiomech.2009.10.028 CrossRefGoogle Scholar
  23. Mithraratne K, Hung A, Sagar M, Hunter P (2010) An efficient heterogeneous continuum model to simulate active contraction of facial soft tissue structures. In: 6th World congress of biomechanics (WCB 2010). Springer, Singapore, pp 1024–1027, 1–6 August, 2010Google Scholar
  24. Mizrahi J, Maroudas A, Lanir Y, Ziv I, Webber TJ (1986) The “instantaneous” deformation of cartilage: effects of collagen fiber orientation and osmotic stress. Biorheology 23:311–330Google Scholar
  25. Mononen ME, Julkunen P, Toyras J, Jurvelin JS, Kiviranta I, Korhonen RK (2011) Alterations in structure and properties of collagen network of osteoarthritic and repaired cartilage modify knee joint stresses. Biomech Model Mechanobiol 10:357–369. doi: 10.1007/s10237-010-0239-1 CrossRefGoogle Scholar
  26. Oberhofer K, Mithraratne K, Stott N, Anderson I (2009) Anatomically-based musculoskeletal modeling: prediction and validation of muscle deformation during walking. Vis Comput 25:843–851. doi: 10.1007/s00371-009-0314-8 CrossRefGoogle Scholar
  27. Pena E, Calvo B, Martinez MA, Doblare M (2006) A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 39:1686–1701. doi: 10.1016/j.jbiomech.2005.04.030 CrossRefGoogle Scholar
  28. Shim VB, Batteley M, Anderson IA, Munro JT (2015) Validation of an efficient method of assigning material properties in finite element analysis of pelvic bone. Comput Methods Biomech Biomed Eng 18(14):1495–1499Google Scholar
  29. Shim VB, Pitto RP, Streicher RM, Hunter PJ, Anderson IA (2007) The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis. J Biomech 40:26–35CrossRefGoogle Scholar
  30. Shim VB, Pitto RP, Streicher RM, Hunter PJ, Anderson IA (2008) Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set. J Biomech Eng 130:051010. doi: 10.1115/1.2960368 CrossRefGoogle Scholar
  31. Shirazi R, Shirazi-Adl A (2009) Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects. J Biomech 42:2458–2465. doi: 10.1016/j.jbiomech.2009.07.022 CrossRefGoogle Scholar
  32. Wang CC, Hung CT, Mow VC (2001) An analysis of the effects of depth-dependent aggregate modulus on articular cartilage stress-relaxation behavior in compression. J Biomech 34:75–84CrossRefGoogle Scholar
  33. Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA (2005) Osteoarthritis—an untreatable disease? Nat Rev Drug Discov 4:331–344CrossRefGoogle Scholar
  34. Yang NH, Nayeb-Hashemi H, Canavan PK, Vaziri A (2010) Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait. J Orthop Res 28:1539–1547. doi: 10.1002/jor.21174 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vickie B. Shim
    • 1
    • 2
    Email author
  • Thor F. Besier
    • 1
    • 3
  • David G. Lloyd
    • 2
    • 4
  • Kumar Mithraratne
    • 1
  • Justin F. Fernandez
    • 1
    • 3
  1. 1.Auckland Bioengineering InstituteThe University of AucklandAucklandNew Zealand
  2. 2.Centre for Musculoskeletal Research, Griffith Health Institute, School of Allied Health SciencesGriffith UniversityGold CoastAustralia
  3. 3.Department of Engineering ScienceThe University of AucklandAucklandNew Zealand
  4. 4.School of Sport Science, Exercise and HealthUniversity of Western AustraliaNedlandsAustralia

Personalised recommendations