Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 14, Issue 5, pp 967–978 | Cite as

Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms

  • Frances M. Davis
  • Yuanming Luo
  • Stéphane Avril
  • Ambroise Duprey
  • Jia Lu
Original Paper

Abstract

In this manuscript, we present a combined experimental and computational technique that can identify the heterogeneous elastic properties of planar soft tissues. By combining inverse membrane analysis, digital image correlation, and bulge inflation tests, we are able to identify a tissue’s mechanical properties locally. To show how the proposed method could be implemented, we quantified the heterogeneous material properties of a human ascending thoracic aortic aneurysm (ATAA). The ATAA was inflated at a constant rate using a bulge inflation device until it ruptured. Every 3 kPa images were taken using a stereo digital image correlation system. From the images, the three-dimensional displacement of the sample surface was determined. A deforming NURBS mesh was derived from the displacement data, and the local strains were computed. The wall stresses at each pressure increment were determined using inverse membrane analysis. The local material properties of the ATAA were then identified using the pointwise stress and strain data. To show that it is necessary to consider the heterogeneous distribution of the mechanical properties in the ATAA, three different forward finite element simulations using pointwise, elementwise, and homogeneous material properties were compared. The forward finite element predictions revealed that heterogeneous nature of the ATAA must be accounted for to accurately reproduce the stress–strain response.

Keywords

Bulge inflation test Heterogeneous material properties Digital image correlation Inverse elastostatic analysis Thoracic aneurysm 

Notes

Acknowledgments

This work was supported in part by the University of Iowa Mathematical and Physical Sciences Funding Program. Dr. Davis was supported by the Whitaker International Scholars Program. The authors thank Dr. Aaron Romo for his assistance with the experimental protocol.

Supplementary material

10237_2014_646_MOESM1_ESM.xlsx (714 kb)
Supplementary material 1 (xlsx 713 KB)

References

  1. Belytschko T, Liu WK, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47zbMATHCrossRefGoogle Scholar
  2. Choudhury N, Bouchot O, Rouleau L, Tremblay D, Cartier R, Butany J, Mongrain R, Leask RL (2009) Local mechanical and structural properties of healthy and diseased human ascending aorta tissue. Cardiovasc Pathol 18(2):83–91. doi: 10.1016/j.carpath.2008.01.001 CrossRefGoogle Scholar
  3. Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD (2012) Biomechanics of the human posterior sclera: age and glaucoma related changes measured using inflation testing. Investig Ophthalmol Vis Sci 53(4):1714–1728. doi: 10.1167/iovs.11-8009 CrossRefGoogle Scholar
  4. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interfac 3(6):15–35. doi: 10.1098/rsif.2005.0073 CrossRefGoogle Scholar
  5. Genovese K, Casaletto L, Humphrey JD, Lu J (2014) Digital image correlation-based point-wise inverse characterization of heterogeneous material properties of gallbladder in vitro. Proc R Soc A 470:20140152. doi: 10.1098/rspa.2014.0152 MathSciNetCrossRefGoogle Scholar
  6. Green AE, Adkins JE (1970) Large elastic deformations. Clarendon Press, OxfordzbMATHGoogle Scholar
  7. Haskett D, Johnson G, Zhou A, Utzinger U (2010) Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomech Model Mechanobiol 9(6):725–736. doi: 10.1007/s10237-010-0209-7 CrossRefGoogle Scholar
  8. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39):4135–4195zbMATHMathSciNetCrossRefGoogle Scholar
  9. Humphrey JD (2003) Review paper: continuum biomechanics of soft biological tissues. Proc R Soc A 459(2029):3–46. doi: 10.1098/rspa.2002.1060 zbMATHMathSciNetCrossRefGoogle Scholar
  10. Humphrey JD, Milewicz DM, Tellides G, Schwartz MA (2014) Dysfunctional mechanosensing in aneurysms. Science 344(6183):477–479. doi: 10.1126/science.1253026
  11. Iliopoulos DC, Deveja RP, Kritharis EP, Perrea D, Sionis GD, Toutouzas K, Stefanadis C, Sokolis DP (2009) Regional and directional variations in the mechanical properties of ascending thoracic aortic aneurysms. Med Eng Phys 31:1–9. doi: 10.1016/j.medengphy.2008.03.002 CrossRefGoogle Scholar
  12. Lu J, Zhao XF (2009) Pointwise identification of elastic properties in nonlinear hyperelastic membranes—part I: theoretical and computational developments. J Appl Mech 76(6):061013. doi: 10.1115/1.3130805 MathSciNetCrossRefGoogle Scholar
  13. Lu J, Zhou X, Raghavan ML (2008) Inverse method of stress analysis for cerebral aneurysms. Biomech Model Mechanobiol 7(6):477–86. doi: 10.1007/s10237-007-0110-1 CrossRefGoogle Scholar
  14. Lu J (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200(5–8):726–741. doi: 10.1016/j.cma.2010.10.001 zbMATHCrossRefGoogle Scholar
  15. Lu J, Hu S, Raghavan ML (2013) A shell-based inverse approach of stress analysis in intracranial aneurysms. Ann Biomed Eng 41(7):1505–1515CrossRefGoogle Scholar
  16. Marra SP, Kennedy FE, Kinkaid JN, Fillinger MF (2006) Elastic and rupture properties of porcine aortic tissue measured using inflation testing. Cardiovasc Eng 6(4):123–31. doi: 10.1007/s10558-006-9021-5 CrossRefGoogle Scholar
  17. Miller K, Lu J (2013) On the prospect of patient-specific biomechanics without patient-specific properties of tissues. J Mech Behav Biomed Mater 27:154–166CrossRefGoogle Scholar
  18. Mohan DH, Melvin JW (1983) Failure properties of passive human aortic tissue. II—biaxial tension tests. J Biomech 16(1):31–44CrossRefGoogle Scholar
  19. Myers KM, Coudrillier B, Boyce BL, Nguyen TD (2010) The inflation response of the posterior bovine sclera. Acta Biomater 6(11):4327–4335. doi: 10.1016/j.actbio.2010.06.007
  20. Ní Annaidh A, Bruyère K, Destrade M, Gilchrist MD, Otténio M (2012) Characterization of the anisotropic mechanical properties of excised human skin. J Mech Behav Biomed Mater 5(1):139–148. doi: 10.1016/j.jmbbm.2011.08.016
  21. Okamoto RJ, Wagenseil JE, DeLong WR, Peterson SJ, Kouchoukos NT, Sundt TM III (2002) Mechanical properties of dilated human ascending aorta. Ann Biomedial Eng 30:624–635. doi: 10.1114/1.1484220 CrossRefGoogle Scholar
  22. Pham T, Martin C, Elefteriades JA, Sun W (2013) Biomechanical characterization of ascending aortic aneurysm with concomitant bicuspid aortic valve and bovine aortic arch. Acta Biomater 9:7927–7936. doi: 10.1016/j.actbio.2013.04.021 CrossRefGoogle Scholar
  23. Reu P (2014) The art and application of DIC: calibration sanity checks. Exp Tech 38(2):1–2. doi: 10.1111/ext.12077 CrossRefGoogle Scholar
  24. Romo A, Badel P, Duprey A, Favre JP, Avril S (2014) In vitro analysis of localized aneurysm rupture. J Biomech 47(3):607–616CrossRefGoogle Scholar
  25. Sokolis DP, Kritharis EP, Iliopoulos DC (2012) Effect of layer heterogeneity on the biomechanical properties of ascending thoracic aortic aneurysms. Med Biol Eng Comput 50:1227–1237. doi: 10.1007/s11517-012-0949-x CrossRefGoogle Scholar
  26. Tonge TK, Atlan LS, Voo LM, Nguyen TD (2013) Full-field bulge test for planar anisotropic tissues: part I—experimental methods applied to human skin tissue. Acta Biomater 9(4):5913–5925. doi: 10.1016/j.actbio.2012.11.035 CrossRefGoogle Scholar
  27. Vorp DA (2007) Biomechanics of abdominal aortic aneurysm. J Biomech 40:1887–1902. doi: 10.1016/j.jbiomech.2006.09.003 CrossRefGoogle Scholar
  28. Vorp DA, Shiro BJ, Ehrlich MP, Juvonen TS, Ergin MA, Griffith BP (2003) Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann Thorac Surg 75:1210–1214CrossRefGoogle Scholar
  29. Wilson JS, Baek S, Humphrey JD (2012) Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J R Soc Interfac 9:2047–2058. doi: 10.1098/rsif.2012.0097 CrossRefGoogle Scholar
  30. Zhao X, Chen X, Lu J (2009) Pointwise identification of elastic properties in nonlinear hyperelastic membranes—part II: experimental validation. J Appl Mech 76(6):061014. doi: 10.1115/1.3130810 CrossRefGoogle Scholar
  31. Zhao X, Raghavan ML, Lu J (2011) Characterizing heterogeneous properties of cerebral aneurysms with unknown stress-free geometry: a precursor to in vivo identification. J Biomech Eng T ASME 133(2):051008CrossRefGoogle Scholar
  32. Zhao X, Raghavan ML, Lu J (2011) Identifying heterogeneous anisotropic properties in cerebral aneurysms: a pointwise approach. Biomech Model Mechanobiol 10(2):177–189CrossRefGoogle Scholar
  33. Zhou J, Fung YC (1997) The degree of nonlinearity and anisotropy of blood vessel elasticity. Proc Natl Acad Sci 94(26):14255–14260. doi: 10.1073/pnas.94.26.14255 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Frances M. Davis
    • 1
  • Yuanming Luo
    • 2
  • Stéphane Avril
    • 1
  • Ambroise Duprey
    • 1
  • Jia Lu
    • 2
  1. 1.Ecole Nationale Suprieure des Mines de Saint-EtienneCIS-EMSE, CNRS:UMR5307, LGFSt. ÉtienneFrance
  2. 2.Department of Mechanical and Industrial EngineeringThe University of IowaIowa CityUSA

Personalised recommendations