Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 14, Issue 3, pp 633–647 | Cite as

Estimating passive mechanical properties in a myocardial infarction using MRI and finite element simulations

  • Dimitri Mojsejenko
  • Jeremy R. McGarvey
  • Shauna M. Dorsey
  • Joseph H. GormanIII
  • Jason A. Burdick
  • James J. Pilla
  • Robert C. Gorman
  • Jonathan F. WenkEmail author
Original Paper

Abstract

Myocardial infarction (MI) triggers a series of maladaptive events that lead to structural and functional changes in the left ventricle. It is crucial to better understand the progression of adverse remodeling, in order to develop effective treatment. In addition, being able to assess changes in vivo would be a powerful tool in the clinic. The goal of the current study is to quantify the in vivo material properties of infarcted and remote myocardium 1 week after MI, as well as the orientation of collagen fibers in the infarct. This will be accomplished by using a combination of magnetic resonance imaging (MRI), catheterization, finite element modeling, and numerical optimization to analyze a porcine model (\(N = 4\)) of posterolateral myocardial infarction. Specifically, properties will be determined by minimizing the difference between in vivo strains and volume calculated from MRI and finite element model predicted strains and volume. The results indicate that the infarct region is stiffer than the remote region and that the infarct collagen fibers become more circumferentially oriented 1 week post-MI. These findings are consistent with previous studies, which employed ex vivo techniques. The proposed methodology will ultimately provide a means of predicting remote and infarct mechanical properties in vivo at any time point post-MI.

Keywords

Myocardial infarction Finite element modeling Left ventricular remodeling MRI Optimization 

Notes

Acknowledgments

This study was supported by National Institutes of Health grants R01 HL063954 (Gorman), R01 HL111090 (Burdick), and T32 HL007954 (Burdick) and by a grant from the American Heart Association 14BGIA18850020 (Wenk). The user-defined material subroutine was originally developed under grant R01 HL077921.

Conflict of interest

None.

References

  1. Augenstein KF, Cowan BR, LeGrice IJ, Nielsen PM, Young AA (2005) Method and apparatus for soft tissue material parameter estimation using tissue tagged magnetic resonance imaging. J Biomech Eng 127:148–157CrossRefGoogle Scholar
  2. Augenstein KF, Cowan BR, LeGrice IJ, Young AA (2006) Estimation of cardiac hyperelastic material properties from MRI tissue tagging and diffusion tensor imaging. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 9:628–635Google Scholar
  3. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Method Appl M 186:311–338CrossRefzbMATHGoogle Scholar
  4. Fomovsky GM, Rouillard AD, Holmes JW (2012) Regional mechanics determine collagen fiber structure in healing myocardial infarcts. J Mol Cell Cardiol 52:1083–1090CrossRefGoogle Scholar
  5. Go AS, Mozaffarian D, Roger VL et al (2014) Heart disease and stroke statistics-2014 update: a report from the American heart association. Circulation 129:e28–e292CrossRefGoogle Scholar
  6. Guccione JM, McCulloch AD, Waldman LK (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng 113:42–55CrossRefGoogle Scholar
  7. Gupta KB, Ratcliffe MB, Fallert MA, Edmunds LH Jr, Bogen DK (1994) Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89:2315–2326Google Scholar
  8. Holmes JW, Nunez JA, Covell JW (1997) Functional implications of myocardial scar structure. Am J Physiol 272:H2123–H2130Google Scholar
  9. Holmes JW, Borg TK, Covell JW (2005) Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng 7:223–253CrossRefGoogle Scholar
  10. Hooks DA, Trew ML, Caldwell BJ, Sands GB, LeGrice IJ, Smaill BH (2007) Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Circ Res 101:e103–e112CrossRefGoogle Scholar
  11. Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans A Math Phys Eng Sci 367:3445–3475CrossRefzbMATHMathSciNetGoogle Scholar
  12. Jackson BM, Gorman JH, Moainie SL et al (2002) Extension of borderzone myocardium in postinfarction dilated cardiomyopathy. J Am Coll Cardiol 40:1160–1167CrossRefGoogle Scholar
  13. Kichula ET, Wang H, Dorsey SM et al (2014) Experimental and computational investigation of altered mechanical properties in myocardium after hydrogel injection. Ann Biomed Eng 42(7):1546–1556Google Scholar
  14. Krishnamurthy A, Villongco CT, Chuang J et al (2013) Patient-specific models of cardiac biomechanics. J Comput Phys 244:4–21CrossRefGoogle Scholar
  15. Kroon W, Delhaas T, Bovendeerd P, Arts T (2009) Computational analysis of the myocardial structure: adaptation of cardiac myofiber orientations through deformation. Med Image Anal 13:346–353CrossRefGoogle Scholar
  16. Lee WN, Pernot M, Couade M et al (2012) Mapping myocardial fiber orientation using echocardiography-based shear wave imaging. IEEE Trans Med Imaging 31:554–562CrossRefGoogle Scholar
  17. Morita M, Eckert CE, Matsuzaki K et al (2011) Modification of infarct material properties limits adverse ventricular remodeling. Ann Thorac Surg 92:617–624CrossRefGoogle Scholar
  18. Moulton MJ, Creswell LL, Downing SW, Actis RL, Szabo BA, Pasque MK (1996) Myocardial material property determination in the in vivo heart using magnetic resonance imaging. Int J Card Imaging 12:153–167CrossRefGoogle Scholar
  19. Nair AU, Taggart DG, Vetter FJ (2007) Optimizing cardiac material parameters with a genetic algorithm. J Biomech 40:1646–1650CrossRefGoogle Scholar
  20. Okamoto RJ, Moulton MJ, Peterson SJ, Li D, Pasque MK, Guccione JM (2000) Epicardial suction: a new approach to mechanical testing of the passive ventricular wall. J Biomech Eng 122:479–487CrossRefGoogle Scholar
  21. Rouillard AD, Holmes JW (2012) Mechanical regulation of fibroblast migration and collagen remodelling in healing myocardial infarcts. J Physiol 590:4585–4602CrossRefGoogle Scholar
  22. Stander N, Roux W, Eggleston T, Craig K (2012) Ls-opt user’s manual version 4.2. In EditionGoogle Scholar
  23. Sun K, Stander N, Jhun C-S et al (2009) A computationally efficient formal optimization of regional myocardial contractility in a sheep with left ventricular aneurysm. J Biomech Eng 131:111001CrossRefGoogle Scholar
  24. Walker JC, Ratcliffe MB, Zhang P et al (2005) MRI-based finite-element analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol 289:H692–H700CrossRefGoogle Scholar
  25. Wang VY, Lam HI, Ennis DB, Cowan BR, Young AA, Nash MP (2009) Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med Image Anal 13:773–784CrossRefGoogle Scholar
  26. Wenk JF, Papadopoulos P, Zohdi TI (2010a) Numerical modeling of stress in stenotic arteries with microcalcifications: a micromechanical approximation. J Biomech Eng 132:091011Google Scholar
  27. Wenk JF, Zhang Z, Cheng G et al (2010b) First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann Thorac Surg 89:1546–1553Google Scholar
  28. Wenk JF, Sun K, Zhang Z et al (2011) Regional left ventricular myocardial contractility and stress in a finite element model of posterobasal myocardial infarction. J Biomech Eng 133:044501CrossRefGoogle Scholar
  29. Wu Y, Chan CW, Nicholls JM, Liao S, Tse HF, Wu EX (2009) Mr study of the effect of infarct size and location on left ventricular functional and microstructural alterations in porcine models. J Magn Reson Imaging 29:305–312CrossRefGoogle Scholar
  30. Xi J, Lamata P, Niederer S et al (2013) The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med Image Anal 17:133–146CrossRefGoogle Scholar
  31. Xu C, Pilla JJ, Isaac G et al (2010) Deformation analysis of 3D tagged cardiac images using an optical flow method. J Cardiovasc Magn Reson 12:19Google Scholar
  32. Zhang S, Crow JA, Yang X et al (2010) The correlation of 3D DT-MRI fiber disruption with structural and mechanical degeneration in porcine myocardium. Ann Biomed Eng 38:3084–3095CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dimitri Mojsejenko
    • 1
  • Jeremy R. McGarvey
    • 2
  • Shauna M. Dorsey
    • 3
  • Joseph H. GormanIII
    • 2
  • Jason A. Burdick
    • 3
  • James J. Pilla
    • 2
    • 4
  • Robert C. Gorman
    • 2
  • Jonathan F. Wenk
    • 1
    • 5
    Email author
  1. 1.Department of Mechanical EngineeringUniversity of KentuckyLexingtonUSA
  2. 2.Gorman Cardiovascular Research Group, Department of SurgeryUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.Department of SurgeryUniversity of KentuckyLexingtonUSA

Personalised recommendations