Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 14, Issue 3, pp 515–536 | Cite as

Modeling function–perfusion behavior in liver lobules including tissue, blood, glucose, lactate and glycogen by use of a coupled two-scale PDE–ODE approach

  • T. Ricken
  • D. Werner
  • H. G. Holzhütter
  • M. König
  • U. Dahmen
  • O. Dirsch
Original Paper

Abstract

This study focuses on a two-scale, continuum multicomponent model for the description of blood perfusion and cell metabolism in the liver. The model accounts for a spatial and time depending hydro-diffusion–advection–reaction description. We consider a solid-phase (tissue) containing glycogen and a fluid-phase (blood) containing glucose as well as lactate. The five-component model is enhanced by a two-scale approach including a macroscale (sinusoidal level) and a microscale (cell level). The perfusion on the macroscale within the lobules is described by a homogenized multiphasic approach based on the theory of porous media (mixture theory combined with the concept of volume fraction). On macro level, we recall the basic mixture model, the governing equations as well as the constitutive framework including the solid (tissue) stress, blood pressure and solutes chemical potential. In view of the transport phenomena, we discuss the blood flow including transverse isotropic permeability, as well as the transport of solute concentrations including diffusion and advection. The continuum multicomponent model on the macroscale finally leads to a coupled system of partial differential equations (PDE). In contrast, the hepatic metabolism on the microscale (cell level) was modeled via a coupled system of ordinary differential equations (ODE). Again, we recall the constitutive relations for cell metabolism level. A finite element implementation of this framework is used to provide an illustrative example, describing the spatial and time-depending perfusion–metabolism processes in liver lobules that integrates perfusion and metabolism of the liver.

Keywords

Multi phase Multi component Two scale Liver tissue Liver perfusion Sinusoidal perfusion Hydro-diffusion–advection-reaction model Cell metabolism Coupled problem Porous media 

References

  1. Ateshian GA (2007) On the theory of reactive mixtures for modeling biological growth. Biomech Model Mechanobiol 6:423–445CrossRefGoogle Scholar
  2. Ateshian GA, Costa KD, Azeloglu EU, III BM, Hung CT (2009) Continuum modeling of biological tissue growth by cell division, and alteratin of intracellular osmolytes and extracellular fixed charge density. J Biomech Eng 131(10):101001. doi: 10.1115/1.3192138
  3. Babcock M, Cardell J (1974) Hepatic glycogen patterns in fasted and fed rats. Am J Anat 140:299–337CrossRefGoogle Scholar
  4. Biot MA (1935) Le probl\(\acute{e}\)me de la consolidation des mati\(\grave{e}\)res argileuses sous une charge. Annales de la Societ\(\acute{e}\) scientifique de Bruxelles 55:110–113Google Scholar
  5. Biot MA (1941) General theory of three dimensional consolidation. J Appl Phys 12:155–164CrossRefzbMATHGoogle Scholar
  6. Blouin A, Bolender RP, Weibel ER (1977) Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol 72(2):441–455Google Scholar
  7. Bluhm J (2002) Modelling of saturated thermo-elastic porous solids with different phase temperatures. In: Ehlers W, Bluhm J (eds) Porous media: theory, experiments and numerical applications. Springer, BerlinGoogle Scholar
  8. Bowen RM (1976a) Theory of mixtures. In: Eringen AC (ed) Continuum physics, vol III. Academic Press, New York, pp 1–127Google Scholar
  9. Bowen RM (1976b) Theory of mixtures. In: Eringen AC (ed) Continuum physics. Academic Press, New YorkGoogle Scholar
  10. Brown JD, Rosen J, Kim YS, Chang L, Sinanan M, Hannaford B (2003) In-vivo and in-situ compressive properties of porcine abdominal soft tissues. In: Westwood JD, Hoffman HM, Mogel GT, Phillips R, Robb RA, Stredney D (eds) Medicine meets virtual reality 11, vol 94. IOS Press, Amsterdam, pp 26–32Google Scholar
  11. Burt A, Portmann B, Ferrell L (2007) MacSweens pathology of the liver. Elsevier, Churchill LivingstoneGoogle Scholar
  12. Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13:167–178CrossRefzbMATHMathSciNetGoogle Scholar
  13. Corrin B, Aterman K (1968) The pattern of glycogen distribution in the liver. Am J Anat 122:57–72CrossRefGoogle Scholar
  14. de Boer R (1996) Highlights in the historical development of the porous media theory: toward a transistent macroscopic theory. Appl Mech Rev 4:201–262CrossRefGoogle Scholar
  15. de Boer R (2000) Theory of porous media: highlights in the historical development and current state. Springer, BerlinCrossRefGoogle Scholar
  16. Debbaut C, Vierendeels J, Siggers JH, Repetto R, Monbaliu D, Segers P (2014) A 3d porous media liver lobule model: the importance of vascular septa and anisotropic permeability for homogeneous perfusion. Comput Methods Biomech Biomed Eng 17(12):1295–1310Google Scholar
  17. Dirsch O, Madrahimov N, Chaudri N, Deng M, Madrahimova F, Schenk A, Dahmen U (2008) Recovery of liver perfusion after focal outflow obstruction and liver resection. Transplantation 85:748–756Google Scholar
  18. Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J (eds) Porous media: theory, experiments and numerical applications. Springer, Berlin, pp 3–86CrossRefGoogle Scholar
  19. Eipper G (1998) Theorie und Numerik finiter elastischer Deformationen in fluidgesättigten Porösen Medien. Dissertation, Bericht Nr. II-1 aus dem Institut für Mechanik (Bauwesen), Universität StuttgartGoogle Scholar
  20. Evans DW, Moran EC, Baptista PM, Soker S, Sparks J (2013) Scale-dependent mechanical properties of native and decellularized liver tissue. Biomech Model Mechanobiol 12(3):569–580CrossRefGoogle Scholar
  21. Garikipati K, Olberding JE, Narayanan H, Arruda EM, Grosh K, Calve S (2006) Biological remodelling: stationary energy, configurational change, internal variables and dissipation. J Mech Phys Solids 54(7):1493–1515CrossRefzbMATHMathSciNetGoogle Scholar
  22. Gerich J (1993) Control of glycaemia. Baillieres Clin Endocrinol Metab 7(3):551–86CrossRefGoogle Scholar
  23. Greve R (2003) Kontinuumsmechanik: Ein Grundkurs. Springer, BerlinCrossRefGoogle Scholar
  24. Grytz R, Girkin CA, Libertiaux V, Downs JC (2012a) Perspectives on biomechanical growth and remodeling mechanisms in glaucoma. Mech Res Commun 42:92–106CrossRefGoogle Scholar
  25. Grytz R, Sigal IA, Ruberti JW, Meschke G, Downs C (2012b) Lamina cribrosa thickening in early glaucoma predicted by a microstructure motivated growth and remodeling approach. Mech Mater 44:99–109CrossRefGoogle Scholar
  26. Hall C (2006) Regulation der hepatischen mikrozirkulation bei schrittweiser resektion im rattenlebermodell. PhD thesis, Medizinische Fakultät der Universität Duisburg-Essen, Zentrum für Chirurgie Klinikum für Allgemeinchirurgie, Viszeral-und TransplantationschirurgieGoogle Scholar
  27. Hariton I, deBotton G, Gasser TC, Holzapfel GH (2007) Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6(3):163–175CrossRefMathSciNetGoogle Scholar
  28. Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodelling of soft tissues. Math. Models Methods Appl Sci 12(3):407–430CrossRefzbMATHMathSciNetGoogle Scholar
  29. Hutter K, Jöhnk K (2004) Continuum methods of physical modeling: continuum mechanics, dimensional analysis, turbulence. Springer, BerlinCrossRefGoogle Scholar
  30. Job G, Herrmann F (2006) Chemical potentiala quantity in search of recognition. Eur J Phys 27:353–371CrossRefGoogle Scholar
  31. Jungermann K (1986) Functional heterogeneity of periportal and perivenous hepatocytes. Enzyme 35:161–180Google Scholar
  32. Kerdok AE (2006) Characterizing the nonlinear mechanical response of liver to surgical manipulation. PhD thesis, Harvard University, Engineering and Applied SciencesGoogle Scholar
  33. König M, Bulik S, Holzhütter H (2012) Quantifying the contribution of the liver to glucose homeostasis: a detailed kinetic model of human hepatic glucose metabolism. PLoS Comput Biol 8(6):e1002,577CrossRefGoogle Scholar
  34. Kuhl E, Holzapfel GA (2007) A continuum model for remodeling in living structures. J Mater Sci 42:8811–8823CrossRefGoogle Scholar
  35. Kuntz E, Kuntz HD (2006) Hepatology: principles and practice. Springer, BerlinGoogle Scholar
  36. Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviours of articular cartilage. ASME J Biomech Eng 113:245–258CrossRefGoogle Scholar
  37. Lautt WW (2009) Hepatic circulation. University of Manitoba, San RafaelGoogle Scholar
  38. Lu JF, Hanyga A (2005) Linear dynamic model for porous media saturated by two immiscible fluids. Int J Solids Struct 42:2689–2709CrossRefzbMATHGoogle Scholar
  39. Maass-Moreno R, Rothe CF (1997) Distribution of pressure gradients along hepatic vasculature. Am J Physiol Heart Circ Physiol 272(6):H2826–H2832. http://ajpheart.physiology.org/content/272/6/H2826.full.pdf
  40. MacPhee PJ, Schmidt EE, Groom AC (1995) Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy. Am J Physiol Gastrointest Liver Physiol 269(5):G692–G698. http://ajpgi.physiology.org/content/269/5/G692.full.pdf
  41. Millonig G, Friedrich S, Adolf S, Fonouni H, Golriz M, Mehrabi A, Stiefel P, Pschl G, Bchler MW, Seitz HK, Mueller S (2010) Liver stiffness is directly influenced by central venous pressure. J Hepatol 52(2):206–210CrossRefGoogle Scholar
  42. Mow VC, Gibbs MC, Lai WM, Zhu WB, Athanasiou KA (1989) Biphasic indentation of articular cartilage-ii. A numerical algorithm and an experimental study. J Biomech 22:853–861CrossRefGoogle Scholar
  43. Nava A, Mazza E, Furrer M, Villiger P, Reinhart WH (2008) In vivo mechanical characterization of human liver. Med Image Anal 12(2):203–216CrossRefGoogle Scholar
  44. Nuttal FQ, Ngo A, Gannon MC (2008) Regulation of hepatic glucose production and the role of gluconeogenesis in humans: is the rate of gluconeogenesis constant? Diabetes Metab Res Rev 24:438–458CrossRefGoogle Scholar
  45. Pierce DM, Ricken T, Holzapfel GA (2013a) A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications. Comput Methods Biomech Biomed Eng 16(12):1344–1361CrossRefGoogle Scholar
  46. Pierce DM, Ricken T, Holzapfel GA (2013b) Modeling sample/patient-specific structural and diffusional responses of cartilage using DT-MRI. Int J Numer Methods Biomed Eng 29(8):807–821CrossRefGoogle Scholar
  47. Radziuk J, Pye S (2001) Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis. Diabetes Metab Res Rev 17:250–272CrossRefGoogle Scholar
  48. Ricken T (2002) Kapillarität in porösen medien—theoretische untersuchung und numerische simulation. PhD thesis, Dissertation, Shaker Verlag, AachenGoogle Scholar
  49. Ricken T, Bluhm J (2009) Evolutional growth and remodeling in multiphase living tissue. Comput Mater Sci 45(3):806–811CrossRefGoogle Scholar
  50. Ricken T, Bluhm J (2010) Remodeling and growth of living tissue: a multiphase theory. Arch Appl Mech 80(5):453–465CrossRefzbMATHGoogle Scholar
  51. Ricken T, de Boer R (2003) Multiphase flow in a capillary porous medium. Comput Mater Sci 28:704–713CrossRefGoogle Scholar
  52. Ricken T, Dahmen U, Dirsch O (2010) A biphasic model for sinusoidal liver perfusion remodeling after outflow obstruction. Biomech Model Mechanobiol 9:435–450CrossRefGoogle Scholar
  53. Saitoh Y, Terada N, Saitoh S, Ohno N, Fujii Y, Ohno S (2010) Histochemical approach of cryobiopsy for glycogen distribution in living mouse livers under fasting and local circulation loss conditions. Histochem Cell Biol 133(2):229–239CrossRefGoogle Scholar
  54. Samur E, Sedef M, Basdogan C, Avtan L, Duzgun O (2005) A robotic indenter for minimally invasive characterization of soft tissues. In: International congress series, CARS 2005: computer assisted radiology and surgery proceedings of the 19th international congress and exhibition, vol 1281, no 0, pp 713–718Google Scholar
  55. Sasse D (1975) Dynamics of liver glycogen: the topochemistry of glycogen synthesis, glycogen content and glycogenolysis under the experimental conditions of glycogen accumulation and depletion. Histochemistry 45:237–254Google Scholar
  56. Schwartz JM, Denninger M, Rancourt D, Moisan C, Laurendeau D (2005) Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Med Image Anal 9(2):103–112Google Scholar
  57. Siggers JH, Leungchavaphongse K, Ho CH, Repetto R (2014) Mathematical model of blood and interstitial flow and lymph production in the liver. Biomec Model Mechanobiol 13(2):363–378Google Scholar
  58. Stanhope KL, Griffen SC, Bair BR, Swarbrick MM, Keim NL, Havel PJ (2008) Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals. Am J Clin Nutr 87:1194–1203Google Scholar
  59. Teutsch HF (2005) The modular microarchitecture of human liver. Hepatology 42(2):317–325CrossRefGoogle Scholar
  60. Teutsch HF, Schuerfeld D, Groezinger E (1999) Three-dimensional reconstruction of parenchymal units in the liver of the rat. Hepatology 29(2):494–505CrossRefGoogle Scholar
  61. Truesdell C (1984) Thermodynamics of diffusion. In: Truesdell C (ed) Rational thermodynamics. Springer, New York, pp 219–236CrossRefGoogle Scholar
  62. Truesdell C, Toupin R (1960) The classical field theory. In: Flügge S (ed) Handbuch der Physik, vol 3/1. Springer, BerlinGoogle Scholar
  63. Valentin A, Humphrey JD, Holzapfel GA (2013) A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation: theory and numerical verification. Int J Numer Methods Biomed Eng 29(8):822–849CrossRefMathSciNetGoogle Scholar
  64. Villeneuve JP, Dagenais PM, Huet P, Roy A, Lapointe R, Marleau D (1996) The hepatic microcirculation in the isolated perfused human liver. Hepatology 23(1):24–31CrossRefGoogle Scholar
  65. Wahren J, Ekberg K (2007) Splanchnic regulation of glucose production. Annu Rev Nutr 27:329–345CrossRefGoogle Scholar
  66. Walpole J, Papin J, Peirce S (2013) Multiscale computational models of complex biological systems. Ann Rev Biomed Eng 15:137–154CrossRefGoogle Scholar
  67. Warren A, Chaberek S, Ostrowski K, Cogger VC, Hilmer SN, McCuskey RS, Fraser R, Le Couteur DG (2008) Effects of old age on vascular complexity and dispersion of the hepatic sinusoidal network. Microcirculation 15(3):191–202CrossRefGoogle Scholar
  68. Werner D, Ricken T, Dahmen U, Dirsch O (2012) A biphasic fem model for the microperfusion in liver lobules. PAMM 12:89–90CrossRefGoogle Scholar
  69. Yuen K, McDaniel P, Riddle M (2012) Twenty-four-hour profiles of plasma glucose, insulin, c-peptide and free fatty acid in subjects with varying degrees of glucose tolerance following short-term, medium-dose prednisone (20 mg/day) treatment: evidence for differing effects on insulin secretion and action. Clin Endocrinol 77:224–232CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • T. Ricken
    • 1
  • D. Werner
    • 1
  • H. G. Holzhütter
    • 2
  • M. König
    • 2
  • U. Dahmen
    • 3
  • O. Dirsch
    • 4
  1. 1.Institute of Mechanics, Structural Analysis and DynamicsTU Dortmund UniversityDortmundGermany
  2. 2.Institute of BiochemistryUniversity Medicine Charité BerlinBerlinGermany
  3. 3.Department of General, Visceral and Transplantation SurgeryUniversity Hospital JenaJenaGermany
  4. 4.Insitute of PathologyUniversity Hospital JenaJenaGermany

Personalised recommendations