Biomechanics and Modeling in Mechanobiology

, Volume 14, Issue 3, pp 437–444 | Cite as

Uterine peristalsis-induced stresses within the uterine wall may sprout adenomyosis

  • Sivan Shaked
  • Ariel J. Jaffa
  • Dan Grisaru
  • David EladEmail author
Original Paper


Adenomyosis is a disease in which ectopic endometrial glands and stromal cells appear in the uterine myometrium. This pathology is common among women of reproductive age, and in addition to chronic pelvic pain and heavy periods it may also cause infertility. The ‘tissue injury and repair’ mechanism in response to increased intrauterine pressures was proposed as the etiology for migration of fragments of basal endometrium into the myometrial wall. In order to investigate this mechanism, a conceptual two-dimensional model of the uterine wall subjected to intrauterine pressures was implemented using ADINA commercial software. The stress field within the uterine wall was examined for a variety of intrauterine sinusoidal pressure waves with varying frequencies. The results revealed that: (1) as the wavelength of the subjected pressure wave decreased, high concentration of stresses developed near the inner uterine cavity; (2) as the pressure wave frequency increased, high gradients of the stresses were obtained; (3) at menstrual phase, the highest stresses obtained at the endometrial–myometrial interface. Therefore, increased uterine activity results in high stresses which may lead to tissue lesions and detachment of endometrial cells.


Endometriosis Adenomyosis Computational model  Intrauterine pressure Endometrial–myometrial interface 



We thank Pavel Kozlovsky for helping in the design of the computational model.

Supplementary material

Supplementary material 1 (mpg 1956 KB)


  1. Benagiano G, Habiba M, Brosens I (2012) The pathophysiology of uterine adenomyosis: an update. Fertil Steril 98:572–579. doi: 10.1016/j.fertnstert.2012.06.044 CrossRefGoogle Scholar
  2. Brosens JJ, de Souza NM, Barker FG (1995) Uterine junctional zone: function and disease. Lancet 346:558–560. doi: 10.1016/S0140-6736(95)91387-4 CrossRefGoogle Scholar
  3. Bulletti C, de Ziegler D, Polli V, del Ferro E, Palini S, Flamigni C (2002) Characteristics of uterine contractility during menses in women with mild to moderate endometriosis. Fertil Steril 77:1156–1161CrossRefGoogle Scholar
  4. Campo S, Campo V, Benagiano G (2012) Infertility and adenomyosis. Obstet Gynecol Int. doi: 10.1155/2012/786132 Google Scholar
  5. Cibils LA (1967) Contractility of the nonpregnant human uterus. Obstet Gynecol 30:441–461Google Scholar
  6. Cockerham AZ (2012) Adenomyosis: a challenge in clinical gynecology. J Midwifery Womens Health 57:212–220. doi: 10.1111/j.1542-2011.2011.00117.x CrossRefGoogle Scholar
  7. de Ziegler D, Bulletti C, Fanchin R, Epiney M, Brioschi PA (2001) Contractility of the nonpregnant uterus: the follicular phase. Ann N Y Acad Sci 943:172–184. doi: 10.1111/j.1749-6632.2001.tb03801 CrossRefGoogle Scholar
  8. Defrere S, Gonzalez-Ramos R, Lousse JC, Colette S, Donnez O, Langendonckt A (2011) Insights into iron and nuclear factor-kappa B (NF-kappaB) involvement in chronic inflammatory processes in peritoneal endometriosis. Histol Histopathol 26:1083–1092Google Scholar
  9. Devlieger R, D’Hooghe T, Timmerman D (2003) Uterine adenomyosis in the infertility clinic. Hum Reprod Update 9:139–147. doi: 10.1093/humupd/dmg010 CrossRefGoogle Scholar
  10. Eytan O, Elad D (1999) Analysis of intra-uterine fluid motion induced by uterine contractions. Bull Math Biol 61:221–238. doi: 10.1006/bulm.1998.0069 CrossRefGoogle Scholar
  11. Eytan O, Jaffa AJ, Har-Toov J, Dalach E, Elad D (1999) Dynamics of the intrauterine fluid–wall interface. Ann Biomed Eng 27:372–379. doi: 10.1114/1.181 CrossRefGoogle Scholar
  12. Fleischer AC (1999) Sonographic assessment of endometrial disorders. Semin Ultrasound CT MR 20:259–266CrossRefGoogle Scholar
  13. Fusi L, Cloke B, Brosens JJ (2006) The uterine junctional zone. Best Pract Res Clin Obstet Gynaecol 20:479–491. doi: 10.1016/j.bpobgyn.2006.02.001 CrossRefGoogle Scholar
  14. Hall DA, Yoder IC (1994) Ultrasound evaluation of the uterus. In: Callen PW (ed) Ultrasonography in obstetrics and gynecology, 3rd edn. Saunders, Philadelphia, pp 586–614Google Scholar
  15. Hendricks CH (1966) Inherent motility patterns and response characteristics of the nonpregnant human uterus. Am J Obstet Gynecol 96:824–843Google Scholar
  16. Hobson MA, Madsen EL, Frank GR, Jiang J, Shi H, Hall TJ et al (2008) Anthropomorphic phantoms for assessment of strain imaging methods involving saline-infused sonohysterography. Ultrasound Med Biol 34:1622–1637. doi: 10.1016/j.ultrasmedbio.2008.02.013 CrossRefGoogle Scholar
  17. Ijland MM, Evers JL, Dunselman GA, van Katwijk C, Lo CR, Hoogland HJ (1996) Endometrial wavelike movements during the menstrual cycle. Fertil Steril 65:746–749Google Scholar
  18. Kissler S, Siebzehnruebl E, Kohl J, Mueller A, Hamscho N, Gaetje R et al (2004) Uterine contractility and directed sperm transport assessed by hysterosalpingoscintigraphy (HSSG) and intrauterine pressure (IUP) measurement. Acta Obstet Gynecol Scand 83:369–374. doi: 10.1111/j.0001-6349.2004.00412 CrossRefGoogle Scholar
  19. Kiss MZ, Hobson MA, Varghese T, Harter J, Kliewer MA, Hartenbach EM et al (2006) Frequency-dependent complex modulus of the uterus: preliminary results. Phys Med Biol 51:3683–3695. doi: 10.1088/0031-9155/51/15/006 CrossRefGoogle Scholar
  20. Koike N, Tsunemi T, Uekuri C, Akasaka J, Ito F, Shigemitsu A, Kobayashi H (2013) Pathogenesis and malignant transformation of adenomyosis (review). Oncol Rep 29:861–867. doi: 10.3892/or.2012.2184 Google Scholar
  21. Kunz G, Leyendecker G (2001) Uterine peristaltic activity during the menstrual cycle: characterization, regulation, function and dysfunction. Reprod Biomed Online 3:5–9Google Scholar
  22. Leyendecker G, Kunz G, Herbertz M, Beil D, Huppert P, Mall G et al (2004) Uterine peristaltic activity and the development of endometriosis. Ann N Y Acad Sci 1034:338–355. doi: 10.1196/annals.1335.036
  23. Leyeyndecker G, Wildt L (2011) A new concept of endometriosis and adenomyosis: tissue injury and repair. Horm Mol Biol Clinl Investig 5:125–142. doi: 10.1515/hmbci.2011.002 Google Scholar
  24. Leyendecker G, Wildt L, Mall G (2009) The pathophysiology of endometriosis and adenomyosis: tissue injury and repair. Arch Gynecol Obstet 280:529–538. doi: 10.1007/s00404-009-1191-0 CrossRefGoogle Scholar
  25. Martini FH, Nath JL, Bartholomew EF (2011) Fundamentals of anatomy and physiology. Pearson (Benjamin Cummings), LondonGoogle Scholar
  26. Nalaboff KM, Pellerito JS, Ben-Levi E (2001) Imaging the endometrium: disease and normal variants. Radiographics 21:1409–1424CrossRefGoogle Scholar
  27. Oki T, Douchi T, Maruta K, Nakamura S, Nagata Y (2002) Changes in endometrial wave-like movements in accordance with the phases of menstrual cycle. J Obstet Gynaecol Res 28:176–181. doi: 10.1046/j.1341-8076.2002.00026 CrossRefGoogle Scholar
  28. Soliman AA, Wojcinski S, Degenhardt F (2014) Ultrasonographic examination of the endometrium and myometrium using acoustic radiation force impulce (ARFI) imaging technology: an initial experience with a new method. Clin Hemorheol Microcirc. doi: 10.3233/CH-141842 Google Scholar
  29. Spilker RL (1979) A hybrid-stress finite-element formulation for thick multilayer laminates. Comput Struct 11:507–514CrossRefGoogle Scholar
  30. Strohmer H, Obruca A, Radner KM, Feichtinger W (1994) Relationship of the individual uterine size and the endometrial thickness in stimulated cycles. Fertil Steril 61:972–975Google Scholar
  31. van Gestel I, Ijland MM, Hoogland HJ, Evers JL (2003) Endometrial wave-like activity in the non-pregnant uterus. Hum Reprod Update 9:131–138. doi: 10.1093/humupd/dmg011 CrossRefGoogle Scholar
  32. Vercellini P, Consonni D, Dridi D, Bracco B, Frattaruolo MP, Somigliana E (2014) Uterine adenomyosis and in vitro fertilization outcome: a systematic review and meta-analysis. Hum Reprod 29:964–977. doi: 10.1093/humrep/deu041 CrossRefGoogle Scholar
  33. Zhang Y, Zhou L, Li TC, Duan H, Yu P, Wang HY (2014) Ultrastructural features of endometrial–myometrial interface and its alteration in adenomyosis. Int J Clin Exp Pathol 7:1469–1477Google Scholar
  34. Zhu L, Xiao L, Che HS, Li YP, Liao JT (2014) Uterine peristalsis exerts control over fluid migration after mock embryo transfer. Hum Reprod 29:279–85. doi: 10.1093/humrep/det429 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sivan Shaked
    • 1
  • Ariel J. Jaffa
    • 2
  • Dan Grisaru
    • 3
    • 4
  • David Elad
    • 1
    Email author
  1. 1.Department of Biomedical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
  2. 2.Ultrasound Unit in Obstetrics and Gynecology, Lis Maternity HospitalTel-Aviv Sourasky Medical CenterTel AvivIsrael
  3. 3.Oncogynecology Unit, Lis Maternity HospitalTel-Aviv Sourasky Medical CenterTel AvivIsrael
  4. 4.Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations