Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 14, Issue 2, pp 427–432 | Cite as

Determination of hip-joint loading patterns of living and extinct mammals using an inverse Wolff’s law approach

  • Patrik Christen
  • Keita Ito
  • Frietson Galis
  • Bert van RietbergenEmail author
Short Communication

Abstract

It is well known that bone adapts its microstructure in response to loading. Based on this form-follows-function relationship, we previously developed a reverse approach to derive joint loads from bone microstructure as acquired with micro-computed tomography. Here, we challenge this approach by calculating hip-joint loading patterns for human and dog, two species exhibiting different locomotion, and comparing them to in vivo measurements. As a proof of concept to use the approach also for extinct taxa, we applied it to a cave lion fossil bone. Calculations were in close agreement with in vivo measurements during walking for extant species, showing distinguished patterns for bipedalism and quadrupedalism. The cave lion calculations clearly revealed its quadrupedal locomotion and suggested a more diverse behaviour compared to the dog, which is in agreement with extant felids. This indicates that our novel approach is potentially useful for making inferences about locomotion in living as well as extinct mammals and to study evolutionary joint development.

Keywords

Bone form–function relationship Hip-joint loading patterns Bone/fossil microstructure Locomotion Micro-computed tomography Micro-finite element modelling 

Notes

Acknowledgments

We thank Reinier van Zelst and Steven D. van der Mije from Naturalis Biodiversity Center for providing a cave lion fossil, Claudia F. Wolschrijn from Utrecht University for providing a dog femur, Ralph Müller from ETH Zurich for support through the VPHOP WP5 group, Joost J.A. de Jong for helping scanning the cave lion fossil, and Joop P.W. van den Bergh for providing the XtremeCT facility at Maastricht University. Funding from the European Union for the osteoporotic virtual physiological human project (VPHOP FP7-ICT2008-223865) is gratefully acknowledged.

References

  1. Barak MM, Lieberman DE, Hublin JJ (2011) A Wolff in sheep’s clothing: trabecular bone adaptation in response to changes in joint loading orientation. Bone 49:1141–1151. doi: 10.1016/J.Bone.08.020 CrossRefGoogle Scholar
  2. Bergmann G, Siraky J, Rohlmann A, Koelbel R (1984) A comparison of hip-joint forces in sheep, dog and man. J Biomech 17:907. doi: 10.1016/0021-9290(84)90004-6 CrossRefGoogle Scholar
  3. Bergmann G, Graichen F, Rohlmann A (1993) Hip-joint loading during walking and running, measured in 2 patients. J Biomech 26:969–990. doi: 10.1016/0021-9290(93)90058-M CrossRefGoogle Scholar
  4. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871. doi: 10.1016/S0021-9290(01)00040-9 CrossRefGoogle Scholar
  5. Bevill G, Keaveny TM (2009) Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone 44:579–584. doi: 10.1016/j.bone.2008.11.020 CrossRefGoogle Scholar
  6. Burr DB (2002) Targeted and nontargeted remodeling. Bone 30:2–4. doi: 10.1016/S8756-3282(01)00619-6 CrossRefGoogle Scholar
  7. Christen P, van Rietbergen B, Lambers FM, Muller R, Ito K (2012) Bone morphology allows estimation of loading history in a murine model of bone adaptation. Biomech Model Mech 11:483–492. doi: 10.1007/S10237-011-0327-X CrossRefGoogle Scholar
  8. Christen P, Ito K, dos Santos AA, Muller R, van Rietbergen B (2013a) Validation of a bone loading estimation algorithm for patient-specific bone remodelling simulations. J Biomech 46:941–948. doi: 10.1016/J.Jbiomech.2012.12.012 CrossRefGoogle Scholar
  9. Christen P, Ito K, Knippels I, Muller R, van Lenthe GH, van Rietbergen B (2013b) Subject-specific bone loading estimation in the human distal radius. J Biomech 46:759–766. doi: 10.1016/J.Jbiomech.2012.11.016 CrossRefGoogle Scholar
  10. Erickson GM, Catanese J, Keaveny TM (2002) Evolution of the biomechanical material properties of the femur. Anat Rec 268:115–124. doi: 10.1002/Ar.10145 CrossRefGoogle Scholar
  11. Gross C (1992) Das Skelett des Höhlenlöwen (Panthera leo spelaea Goldfuss, 1810) aus Siegsdorf/Ldkr. Traunstein im Vergleich mit anderen Funden aus Deutschland und den Niederlanden. PhD Thesis, Tierärztliche Fakultät der Maximilians-Universität, MünchenGoogle Scholar
  12. Hutchinson JR, Gatesy SM (2006) Dinosaur locomotion—beyond the bones. Nature 440:292–294. doi: 10.1038/440292a CrossRefGoogle Scholar
  13. Jenkins FA, Camazine SM (1977) Hip structure and locomotion in ambulatory and cursorial carnivores. J Zool 181:351–370CrossRefGoogle Scholar
  14. Lambers FM, Schulte FA, Kuhn G, Webster DJ, Muller R (2011) Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry. Bone 49:1340–1350. doi: 10.1016/J.Bone.2011.08.035 CrossRefGoogle Scholar
  15. Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice-Hall International, Englewood CliffszbMATHGoogle Scholar
  16. Mullender MG, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthopaed Res 13:503–512. doi: 10.1002/Jor.1100130405 CrossRefGoogle Scholar
  17. Page AE, Allan C, Jasty M, Harrigan TP, Bragdon CR, Harris WH (1993) Determination of loading parameters in the canine hip in vivo. J Biomech 26:571–579. doi: 10.1016/0021-9290(93)90018-A
  18. Pontzer H, Lieberman DE, Momin E, Devlin MJ, Polk JD, Hallgrimsson B, Cooper DML (2006) Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation. J Exp Biol 209:57–65. doi: 10.1242/Jeb.01971 CrossRefGoogle Scholar
  19. Pressel T, Bouguecha A, Vogt U, Meyer-Lindenberg A, Behrens BA, Nolte I, Windhagen H (2005) Mechanical properties of femoral trabecular bone in dogs. Biomed Eng Online 4:17. doi: 10.1186/1475-925X-4-17 CrossRefGoogle Scholar
  20. Roux W (1881) Der Kampf der Theile im Organismus. Ein Beitrag zur Vervollständigung der mechanischen Zweckmässigkeitslehre. Verlag von Wilhelm Engelmann, LeipzigCrossRefGoogle Scholar
  21. Schulte FA, Ruffoni D, Lambers FM, Christen D, Webster DJ, Kuhn G, Muller R (2013) Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. Plos One 8. doi: 10.1371/journal.pone.0062172
  22. Sugiyama T, Meakin LB, Browne WJ, Galea GL, Price JS, Lanyon LE (2012) Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J Bone Miner Res 27:1784–1793. doi: 10.1002/Jbmr.1599 CrossRefGoogle Scholar
  23. Sugiyama T, Price JS, Lanyon LE (2010) Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone 46:314–321. doi: 10.1016/J.Bone.2009.08.054 CrossRefGoogle Scholar
  24. Ulrich D, van Rietbergen B, Weinans H, Ruegsegger P (1998) Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech 31:1187–1192Google Scholar
  25. Van Rietbergen B, Huiskes R, Eckstein F, Ruegsegger P (2003) Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res 18:1781–1788. doi: 10.1359/Jbmr.2003.18.10.1781 CrossRefGoogle Scholar
  26. Van Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28:69–81CrossRefGoogle Scholar
  27. Walker EP, Nowak RM (1991) Walker’s mammals of the world, 5th edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  28. Wolff J (1892) Das Gesetz der Transformation der Knochen. Verlag von August Hirschwald, BerlinGoogle Scholar
  29. Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32:1005–1012. doi: 10.1016/S0021-9290(99)00111-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Patrik Christen
    • 1
    • 3
  • Keita Ito
    • 1
  • Frietson Galis
    • 2
  • Bert van Rietbergen
    • 1
    Email author
  1. 1.Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Naturalis Biodiversity CenterLeidenThe Netherlands
  3. 3.Department of ZoologyUniversity of OxfordOxfordUK

Personalised recommendations