Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 13, Issue 3, pp 653–663 | Cite as

A three-dimensional constitutive model for the stress relaxation of articular ligaments

  • Frances M. Davis
  • Raffaella De Vita
Original Paper

Abstract

A new nonlinear constitutive model for the three-dimensional stress relaxation of articular ligaments is proposed. The model accounts for finite strains, anisotropy, and strain-dependent stress relaxation behavior exhibited by these ligaments. The model parameters are identified using published uniaxial stress–stretch and stress relaxation data on human medial collateral ligaments (MCLs) subjected to tensile tests in the fiber and transverse to the fiber directions (Quapp and Weiss in J Biomech Eng Trans ASME 120:757–763, 1998; Bonifasi-Lista et al. in J Orthop Res 23(1):67–76, 2005). The constitutive equation is then used to predict the nonlinear elastic and stress relaxation response of ligaments subjected to shear deformations in the fiber direction and transverse to the fiber direction, and an equibiaxial extension. A direct comparison with stress relaxation data collected by subjecting human MCLs to shear deformation in the fiber direction is presented in order to demonstrate the predictive capabilities of the model.

Keywords

Nonlinear viscoelasticity Stress relaxation Transversely isotropic material Finite strain  Simple shear  Biaxial stretch Collagenous tissue Medial collateral ligament (MCL) 

Notes

Acknowledgments

Funding was provided by NSF CAREER Grant No. 1150397. Frances M. Davis was supported by the Ford Foundation Pre-Doctoral Fellowship and National Science Foundation Graduate Research Fellowship Program.

References

  1. Amiel D, Frank C, Harwood F, Fronek J, Akeson W (1983) Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1(3):257–265CrossRefGoogle Scholar
  2. Bonifasi-Lista C, Lakez SP, Small MS, Weiss JA (2005) Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. J Orthop Res 23(1):67–76CrossRefGoogle Scholar
  3. Bustamante R, Merodio J (2010) On simple constitutive restrictions for transversely isotropic nonlinearly elastic materials and isotropic magneto-sensitive elastomers. J Eng Math 68(1):15–26CrossRefzbMATHMathSciNetGoogle Scholar
  4. Davis FM, De Vita R (2012) A nonlinear constitutive model for stress relaxation in ligaments and tendons. Ann Biomed Eng 40(12):2541–2550CrossRefGoogle Scholar
  5. Duenwald SE, Vanderby R, Lakes RS (2009) Viscoelastic relaxation and recovery of tendon. Ann Biomed Eng 37(6):1131–1140CrossRefGoogle Scholar
  6. Duenwald SE, Vanderby R, Lakes RS (2010) Stress relaxation and recovery in tendon and ligament: experiment and modeling. Biorheology 47(1):1–14Google Scholar
  7. Findley WN, Lai JSY (1967) A modified superposition principle applied to the creep of nonlinear viscoelastic material under abrupt changes in state of combined stress. Trans Soc Rheol 11(3):361–380CrossRefGoogle Scholar
  8. Fung YC (1993) Biomechanics, mechanical properties of living tissues, 2nd edn. Springer, New YorkGoogle Scholar
  9. Gardiner JC, Weiss JA (2001) Simple shear testing of parallel-fibered planar soft tissues. J Biomech Eng Trans ASME 123(2):170–175CrossRefGoogle Scholar
  10. Gardiner JC, Weiss JA (2003) Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J Orthop Res 21(6):1098–1106 Google Scholar
  11. Hingorani RV, Provenzano PP, Lakes RS, Escarcega A, Vanderby R (2004) Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann Biomed Eng 32(2):306–312Google Scholar
  12. Holzapfel GA, Ogden RW (2009) On planar biaxial tests for anisotropic nonlinearly elastic solids: a continuum mechanical framework. Math Mech Solids 14(5):474–489CrossRefzbMATHGoogle Scholar
  13. Horgan CO, Murphy JG (2011) Simple shearing of soft biological tissues. Proc R Soc A-Math Phys Eng Sci 467:760–777CrossRefzbMATHMathSciNetGoogle Scholar
  14. Hurschler C, Loitz-Ramage B, Vanderby R (1997) A structurally based stress-stretch relationship for tendon and ligament. J Biomech Eng Trans ASME 119(4):392–399CrossRefGoogle Scholar
  15. Johnson GA, Livesay GA, Woo SLY, Rajagopal KR (1996) A single integral finite strain viscoelastic model of ligaments and tendons. J Biomech Eng Trans ASME 118(2):221–226CrossRefGoogle Scholar
  16. Kannus P (2000) Structure of the tendon connective tissue. Scand J Med Sci Sports 10(6):312–320CrossRefGoogle Scholar
  17. Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16(1):1–12CrossRefGoogle Scholar
  18. Limbert G, Middleton J (2004) A transversely isotropic viscohyperelastic material—application to the modeling of biological soft connective tissues. Int J Solids Struct 41(15):4237–4260CrossRefzbMATHGoogle Scholar
  19. Merodio J, Ogden RW (2003) A note on strong ellipticity for transversely isotropic linearly elastic solids. Q J Mech Appl Math 56(4):589–591CrossRefzbMATHMathSciNetGoogle Scholar
  20. Merodio J, Ogden RW (2005) Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int J Non-Linear Mech 40:213–227CrossRefzbMATHGoogle Scholar
  21. Murphy JG (2012) Tension in the fibres of anisotropic non-linearly hyperelastic materials. some stability results and constitutive restrictions. Int J Solids Struct 50(2):423–428Google Scholar
  22. Pioletti DP, Rakotomanana LR (2000) On the independence of time and strain effects in the stress relaxation of ligaments and tendons. J Biomech 33(12):1729–1732CrossRefGoogle Scholar
  23. Pipkin AC, Rogers TG (1968) A non-linear integral representation for viscoelastic behaviour. J Mech Phys Solids 16(1):59–72CrossRefzbMATHGoogle Scholar
  24. Provenzano PP, Lakes RS, Keenan T, Vanderby R (2001) Nonlinear ligament viscoelasticity. Ann Biomed Eng 29(10):908–914CrossRefGoogle Scholar
  25. Provenzano PP, Lakes RS, Corr DT, Vanderby R (2002) Application of nonlinear viscoelastic models to describe ligament behavior. Biomech Model Mechanobiol 1(1):45–57Google Scholar
  26. Puso MA, Weiss JA (1998) Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J Biomech Eng Trans ASME 120(1):62–70CrossRefGoogle Scholar
  27. Quapp KM, Weiss JA (1998) Material characterization of human medial collateral ligament. J Biomech Eng Trans ASME 120:757–763CrossRefGoogle Scholar
  28. Rajagopal KR, Wineman AS (2009) Response of anisotropic nonlinearly viscoelastic solids. Math Mech Solids 14(5):490–501CrossRefzbMATHMathSciNetGoogle Scholar
  29. Schapery R (1969) On the characterization of nonlinear viscoelastic materials. Polym Eng Sci 9(4):295–310CrossRefGoogle Scholar
  30. Thornton GM, Oliynyk A, Frank CB, Shrive NG (1997) Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. J Orthop Res 15(5):652–656CrossRefGoogle Scholar
  31. Truesdell C, Noll W, Antman SS (2004) The non-linear field theories of mechanics, vol 3. Springer, BerlinCrossRefGoogle Scholar
  32. Weiss JA, Gardiner JC, Bonifasi-Lista C (2002) Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J Biomech 35(7):943–950CrossRefGoogle Scholar
  33. Zhang D, Arola DD (2004) Applications of digital image correlation to biological tissues. J Biomed Opt 9(4):691–699CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Virginia TechBlacksburgUSA

Personalised recommendations