Biomechanics and Modeling in Mechanobiology

, Volume 13, Issue 3, pp 573–584 | Cite as

Non-ideal effects in indentation testing of soft tissues

  • John D. Finan
  • Patrick M. Fox
  • Barclay MorrisonIIIEmail author
Original Paper


Indentation has several advantages as a loading mode for determining constitutive behavior of soft, biological tissues. However, indentation induces a complex, spatially heterogeneous deformation field that creates analytical challenges for the calculation of constitutive parameters. As a result, investigators commonly assume small indentation depths and large sample thicknesses to simplify analysis and then restrict indentation depth and sample geometry to satisfy these assumptions. These restrictions limit experimental resolution in some fields, such as brain biomechanics. However, recent experimental evidence suggests that conventionally applied limits are in fact excessively conservative. We conducted a parametric study of indentation loading with various indenter geometries, surface interface conditions, sample compressibility, sample geometry and indentation depth to quantitatively describe the deviation from previous treatments that results from violation of the assumptions of small indentation depth and large sample thickness. We found that the classical solution was surprisingly robust to violation of the assumption of small strain but highly sensitive to violation of the assumption of large sample thickness, particularly if the indenter was cylindrical. The ramifications of these findings for design of indentation experiments are discussed and correction factors are presented to allow future investigators to account for these effects without recreating our finite element models.


Finite element modeling Indentation Parametric study Brain Large strain 



This study was supported by the National Highway and Traffic Safety Administration, Project No. DTNH22-08-C-00088.

Supplementary material

10237_2013_519_MOESM1_ESM.xlsx (60 kb)
Supplementary material 1 (XLSX 61 KB)


  1. Abaqus Analysis User’s Manual Section 19.5.1 2010Google Scholar
  2. Christ AF, Franze K, Gautier H, Moshayedi P, Fawcett J, Franklin RJ, Karadottir RT, Guck J (2010) Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. J Biomech 43(15):2986–2992. doi: 10.1016/j.jbiomech.2010.07.002 CrossRefGoogle Scholar
  3. Crick SL, Yin FCP (2007) Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point. Biomech Model Mechan 6(3):199–210. doi: 10.1007/S10237-006-0046-X CrossRefGoogle Scholar
  4. Dall’Ara E, Schmidt R, Zysset P (2012) Microindentation can discriminate between damaged and intact human bone tissue. Bone 50(4):925–929. doi: 10.1016/j.bone.2012.01.002 CrossRefGoogle Scholar
  5. Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5):2798–2810CrossRefGoogle Scholar
  6. Elias PZ, Spector M (2012) Viscoelastic characterization of rat cerebral cortex and type I collagen scaffolds for central nervous system tissue engineering. J Mech Behav Biomed Mater 12:63–73. doi: 10.1016/j.jmbbm.2012.03.014 CrossRefGoogle Scholar
  7. Elkin BS, Azeloglu EU, Costa KD, Morrison B III (2007) Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J Neurotrauma 24(5):812–822. doi: 10.1089/neu.2006.0169 CrossRefGoogle Scholar
  8. Elkin BS, Ilankovan A, Morrison B III (2010) Age-dependent regional mechanical properties of the rat hippocampus and cortex. J Biomech Eng 132(1):011010. doi: 10.1115/1.4000164 CrossRefGoogle Scholar
  9. Elkin BS, Ilankovan A, Morrison B III, (2011) A detailed viscoelastic characterization of the rat brain. J Neurotrauma doi: 10.1089/neu.2010.1604
  10. Field JS, Swain MV (1993) A simple predictive model for spherical indentation. J Mater Res 8(2):297–306. doi: 10.1557/Jmr.1993.0297 CrossRefGoogle Scholar
  11. Finan JD, Elkin BS, Pearson EM, Kalbian IL, Morrison B III (2012) Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age. Ann Biomed Eng 40(1):70–78. doi: 10.1007/s10439-011-0394-2 Google Scholar
  12. FischerCripps AC, Lawn BR (1996) Indentation stress-strain curves for ”quasi-ductile” ceramics. Acta Mater 44(2):519–527. doi: 10.1016/1359-6454(95)00204-9 CrossRefGoogle Scholar
  13. Garo A, Hrapko M, van Dommelen JA, Peters GW (2007) Towards a reliable characterisation of the mechanical behaviour of brain tissue: the effects of post-mortem time and sample preparation. Biorheology 44(1):51–58Google Scholar
  14. Gefen A, Gefen N, Zhu Q, Raghupathi R, Margulies SS (2003) Age-dependent changes in material properties of the brain and braincase of the rat. J Neurotrauma 20(11):1163–1177. doi: 10.1089/089771503770802853 CrossRefGoogle Scholar
  15. Gefen A, Margulies SS (2004) Are in vivo and in situ brain tissues mechanically similar? J Biomech 37(9):1339–1352. doi: 10.1016/j.jbiomech.2003.12.032 CrossRefGoogle Scholar
  16. Hayes WC, Herrmann G, Mockros LF, Keer LM (1972) A mathematical analysis for indentation tests of articular cartilage. J Biomech 5(5):541CrossRefGoogle Scholar
  17. Jin H, Lewis JL (2004) Determination of Poisson’s ratio of articular cartilage by indentation using different-sized indenters. J Biomech Eng-T Asme 126(2):138–145. doi: 10.1115/1/.1688772 Google Scholar
  18. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge Google Scholar
  19. Kalidindi SR, Pathak S (2008) Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Mater 56(14):3523–3532. doi: 10.1016/J.Actamat.2008.03.036 Google Scholar
  20. Lee EH, Radok JRM (1960) The contact problem for visooelastic bodies. J Appl Mech 27(3):438–444CrossRefzbMATHMathSciNetGoogle Scholar
  21. Lin DC, Dimitriadis EK, Horkay F (2007) Elasticity of rubber-like materials measured by AFM nanoindentation. Express Polym Lett 1(9):576–584. doi: 10.3144/expresspolymlett.2007.79 CrossRefGoogle Scholar
  22. Lin DC, Shreiber DI, Dimitriadis EK, Horkay F (2009) Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models. Biomech Model Mechanobiol 8(5):345–358. doi: 10.1007/s10237-008-0139-9 CrossRefGoogle Scholar
  23. Long R, Hall MS, Wu M, Hui CY (2011) Effects of gel thickness on microscopic indentation measurements of gel modulus. Biophys J 101(3):643–650. doi: 10.1016/j.bpj.2011.06.049 CrossRefGoogle Scholar
  24. Mao H, Elkin BS, Genthikatti VV, Morrison B III, Yang KH (2013) Why is CA3 more vulnerable than CA1 in experimental models of controlled cortical impact-induced brain injury? J Neurotrauma doi: 10.1089/neu.2012.2520
  25. Samani A, Plewes D (2007) An inverse problem solution for measuring the elastic modulus of intact ex vivo breast tissue tumours. Phys Med Biol 52(5):1247–1260. doi: 10.1088/0031-9155/52/5/003 CrossRefGoogle Scholar
  26. Shulyakov AV, Cenkowski SS, Buist RJ, Del Bigio MR (2011) Age-dependence of intracranial viscoelastic properties in living rats. J Mech Behav Biomed Mater 4(3):484–497. doi: 10.1016/j.jmbbm.2010.12.012 Google Scholar
  27. Shulyakov AV, Fernando F, Cenkowski SS, Del Bigio MR (2009) Simultaneous determination of mechanical properties and physiologic parameters in living rat brain. Biomech Model Mechanobiol 8(5):415–425. doi: 10.1007/s10237-008-0147-9 CrossRefGoogle Scholar
  28. Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57CrossRefzbMATHMathSciNetGoogle Scholar
  29. Stolz M, Raiteri R, Daniels AU, VanLandingham MR, Baschong W, Aebi U (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86(5):3269–3283. doi: 10.1016/S0006-3495(04)74375-1 CrossRefGoogle Scholar
  30. Ting TCT (1966) Contact stresses between a rigid indenter and a viscoelastic half-space. J Appl Mech 33(4):845CrossRefzbMATHGoogle Scholar
  31. van Dommelen JA, van der Sande TP, Hrapko M, Peters GW (2010) Mechanical properties of brain tissue by indentation: interregional variation. J Mech Behav Biomed Mater 3(2):158–166. doi: 10.1016/j.jmbbm.2009.09.001 CrossRefGoogle Scholar
  32. Yoffe EH (1984) Modified hertz theory for spherical indentation. Philos Mag A 50(6):813–828CrossRefMathSciNetGoogle Scholar
  33. Zhang M, Zheng YP, Mak AFT (1997) Estimating the effective Young’s modulus of soft tissues from indentation tests: nonlinear finite element analysis of effects of friction and large deformation. Med Eng Phys 19(6):512–517CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • John D. Finan
    • 1
  • Patrick M. Fox
    • 1
  • Barclay MorrisonIII
    • 1
    Email author
  1. 1.Neurotrauma and Repair Laboratory, Department of Biomedical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations