Biomechanics and Modeling in Mechanobiology

, Volume 12, Issue 6, pp 1205–1220 | Cite as

Three-dimensional surface geometries of the rabbit soleus muscle during contraction: input for biomechanical modelling and its validation

  • Markus Böl
  • Kay Leichsenring
  • Christine Weichert
  • Maike Sturmat
  • Philipp Schenk
  • Reinhard Blickhan
  • Tobias Siebert
Original Paper

Abstract

There exists several numerical approaches to describe the active contractile behaviour of skeletal muscles. These models range from simple one-dimensional to more advanced three-dimensional ones; especially, three-dimensional models take up the cause of describing complex contraction modes in a realistic way. However, the validation of such concepts is challenging, as the combination of geometry, material and force characteristics is so far not available from the same muscle. To this end, we present in this study a comprehensive data set of the rabbit soleus muscle consisting of the muscles’ characteristic force responses (active and passive), its three-dimensional shape during isometric, isotonic and isokinetic contraction experiments including the spatial arrangement of muscle tissue and aponeurosis–tendon complex, and the fascicle orientation throughout the whole muscle at its optimal length. In this way, an extensive data set is available giving insight into the three-dimensional geometry of the rabbit soleus muscle and, further, allowing to validate three-dimensional numerical models.

Keywords

Three-dimensional geometry Rabbit soleus muscle Muscle geometry Muscle data set  Model validation 

Notes

Acknowledgments

Partial support for this research was provided by the Deutsche Forschungsgemeinschaft (DFG) under Grants BO 3091/4-1 and SI 841/3-1.

Supplementary material

10237_2013_476_MOESM1_ESM.txt (428 kb)
Supplementary material 1 (txt 427 KB)
10237_2013_476_MOESM2_ESM.stl (38.5 mb)
Supplementary material 2 (STL 39447 KB)
10237_2013_476_MOESM3_ESM.stl (26.8 mb)
Supplementary material 3 (STL 27419 KB)
10237_2013_476_MOESM4_ESM.stl (33 mb)
Supplementary material 4 (STL 33766 KB)

References

  1. Abbott BC, Baskin RJ (1962) Volume changes in frog muscle during contraction. J Physiol 161(3):379–391Google Scholar
  2. Agur AM, Ng-Thow-Hing V, Ball KA, Fiume E, McKee NH (2003) Documentation and three-dimensional modelling of human soleus muscle architecture. Clin Anat 4:285–293CrossRefGoogle Scholar
  3. Ahn AN, Full RJ (2002) A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect. J Theor Biol 205(3):379–389Google Scholar
  4. Albracht K, Arampatzis A, Baltzopoulos V (2008) Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo. J Biomech 41(10):2211–2218CrossRefGoogle Scholar
  5. Asmussen G, Maréchal G (1989) Maximal shortening velocities, isomyosins and fibre types in soleus muscle of mice, rats and guinea-pigs. J Physiol 416(1):245–254Google Scholar
  6. Azizi E, Roberts TJ (2009) Biaxial strain and variable stiffness in aponeuroses. J Physiol 587(17):4309–4318CrossRefGoogle Scholar
  7. Azizi E, Brainerd EL, Roberts TJ (2008) Variable gearing in pennate muscles. Proc Natl Acad Sci USA 105(5):1745–1750CrossRefGoogle Scholar
  8. Barclay CJ (1996) Mechanical efficiency and fatigue of fast and slow muscles of the mouse. J Physiol 497(3):781–794Google Scholar
  9. Baskin RJ (1967) Changes of volume in striated muscle. Am Zool 7(3):593–601Google Scholar
  10. Baskin RJ, Paolini PJ (1964) Volume change accompanying passive stretch of frog muscle. Nature 204(4959):694–695CrossRefGoogle Scholar
  11. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267CrossRefGoogle Scholar
  12. Biewener AA (1998a) Muscle function in vivo: a comparison of muscles used for elastic energy savings versus muscles used to generate mechanical power. Am Zool 38(4):703–717Google Scholar
  13. Biewener AA (1998b) Muscle-tendon stresses and elastic energy storage during locomotion in the horse. Comp Biochem Physiol Part B Biochem Mol Biol 120(1):73–87CrossRefGoogle Scholar
  14. Blemker SS, Pinsky PM, Delp SL (2005) A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech 38(4):657–665CrossRefGoogle Scholar
  15. Böl M (2010) Micromechanical modelling of skeletal muscles: From the single fibre to the whole muscle. Arch Appl Mech 80(5): 557–567Google Scholar
  16. Böl M, Reese S (2008) Micromechanical modelling of skeletal muscles based on the finite element method. Comput Methods Biomech Biomed Eng 11(5):489–504CrossRefGoogle Scholar
  17. Böl M, Pipetz A, Reese S (2009) Finite element model for the simulation of skeletal muscle fatigue. Mat-wiss u Werktsofftech 40(1–2):5–12CrossRefGoogle Scholar
  18. Böl M, Stark H, Schilling N (2011a) On a phenomenological model for fatigue effects in skeletal muscles. J Theor Biol 281(1):122–132CrossRefGoogle Scholar
  19. Böl M, Sturmat M, Weichert C, Kober C (2011b) A new approach for the validation of skeletal muscle modelling using MRI data. Comput Mech 47(5):591–601CrossRefMATHGoogle Scholar
  20. Böl M, Weikert R, Weichert C (2011c) A coupled electromechanical model for the excitation-dependent contraction of skeletal muscle. J Mech Behav Biomed Mater 4(7):1299–1310CrossRefGoogle Scholar
  21. Böl M, Kruse R, Ehret AE, Leichsenring K, Siebert T (2012) Compressive properties of passive skeletal muscle: the impact of precise sample geometry on parameter identification in inverse finite element analysis. J Biomech 45(15):2673–2679CrossRefGoogle Scholar
  22. Brown IE, Cheng EJ, Loeb GE (1999) Measured and modeled properties of mammalian skeletal muscle. II. The effects of stimulus frequency on force-length and force-velocity relationships. J Muscle Res Cell Motil 20(7):627–643CrossRefGoogle Scholar
  23. Bullimore SR, Leonard TR, Rassier DE, Herzog W (2007) History-dependence of isometric muscle force: effect of prior stretch or shortening amplitude. J Biomech 40(7):1518–1524CrossRefGoogle Scholar
  24. Calvo B, Ramírez A, Alonso A, Grasa J, Soteras F, Osta R, Muñoz MJ (2010) Passive nonlinear elastic behaviour of skeletal muscle: experimental results and model formulation. J Biomech 43(2):318–325CrossRefGoogle Scholar
  25. Chi SW, Hodgson J, Chen JS, Edgerton VR, Shin DD, Roiz RA, Sinha S (2010) Finite element modeling reveals complex strain mechanics in the aponeuroses of contracting skeletal muscle. J Biomech 43(7):1243–1250CrossRefGoogle Scholar
  26. Curtis N, Jones ME, Evans SE, Shi J, O’higgins P, Fagan MJ (2009) Predicting muscle activation patterns from motion and anatomy: modelling the skull of Sphenodon (Diapsida: Rhynchocephalia). J R Soc Interface 7(42):153–160CrossRefGoogle Scholar
  27. Ehret AE, Böl M, Itskov M (2011) A continuum constitutive model for the active behaviour of skeletal muscle. J Mech Phys Solids 59(3):625–636MathSciNetCrossRefMATHGoogle Scholar
  28. Eng CM, Smallwood LH, Rainiero MP, Lahey M, Ward SR, Lieber RL (2008) Scaling of muscle architecture and fiber types in the rat hindlimb. J Exp Biol 211(14):2336–2345CrossRefGoogle Scholar
  29. Fernandez JW, Buist ML, Nickerson DP, Hunter PJ (2005) Modelling the passive and nerve activated response of the rectus femoris muscle to a flexion loading: a finite element framework. Med Eng Phys 27(10):862–870CrossRefGoogle Scholar
  30. Fry NR, Gough M, Shortland AP (2004) Three-dimensional realisation of muscle morphology and architecture using ultrasound. Gait Posture 20(2):177–182CrossRefGoogle Scholar
  31. Fung L, Wong B, Ravichandiran K, Agur A, Rindlisbacher T, Elmaraghy A (2009) Three-dimensional study of pectoralis major muscle and tendon architecture. Clin Anat 22(4):500–508CrossRefGoogle Scholar
  32. García-Vallejo D, Schiehlen W (2012) 3D-simulation of human walking by parameter optimization. Arch Appl Mech 82(4):533–556CrossRefGoogle Scholar
  33. Geyer H, Herr H (2010) A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans Rehabil Eng 18(3):263–273CrossRefGoogle Scholar
  34. Ghafari AS, Meghdari A, Vossoughi GR (2009) Forward dynamics simulation of human walking employing an iterative feedback tuning approach. P I Mech Eng I-J Sys 223(3):289–297Google Scholar
  35. Gillis GB, Biewener AA (2002) Effects of surface grade on proximal hindlimb muscle strain and activation during rat locomotion. J Appl Physiol 93(5):1731–1743Google Scholar
  36. Gorb SN, Fischer MS (2000) Three-dimensional analysis of the arrangement and length distribution of fascicles in the triceps muscle of Galea musteloides (Rodentia, Cavimorpha). Zoomorphology 120(2):91–97CrossRefGoogle Scholar
  37. Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184(1):170–192Google Scholar
  38. Grasa J, Ramírez A, Osta R, Muñoz MJ, Soteras F, Calvo B (2011) A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle. Biomech Model Mechanobiol 10(5): 779–787Google Scholar
  39. Günther M, Schmitt S, Wank V (2007) High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models. Biol Cybern 97(1):63–79CrossRefMATHGoogle Scholar
  40. Günther M, Röhrle O, Haeufle DFB, Schmitt S (2012) Spreading out muscle mass within a Hill-Type model: a computer simulation study. Comput Math Methods Med 2012:1–13CrossRefGoogle Scholar
  41. Hedenstierna S, Halldin P, Brolin K (2008) Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue. Comput Methods Biomech Biomed Eng 11(6):627–639CrossRefGoogle Scholar
  42. Heemskerk AM, Strijkers GJ, Vilanova A, Drost MR, Nicolay K (2005) Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging. Magn Reson Med 53(6):1333–1340CrossRefGoogle Scholar
  43. Heemskerk AM, Sinha TK, Wilson KJ, Ding Z, Damon BM (2009) Quantitative assessment of DTI-based muscle fiber tracking and optimal tracking parameters. Magn Reson Med 61(2):467–472CrossRefGoogle Scholar
  44. Herbert RD, Crosbie J (1997) Rest length and compliance of non-immobilised and immobilised rabbit soleus muscle and tendon. Eur J Appl Physiol Occup Physiol 76(5):472–479CrossRefGoogle Scholar
  45. Herzog W (2009) The biomechanics of muscle contraction: optimizing sport performance. Sport-Orthop Sport-Traumat 25(4):286–293CrossRefGoogle Scholar
  46. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc B 126(843):136–195CrossRefGoogle Scholar
  47. Hill AV (1950) The dimensions of animals and their muscular dynamics. Sci Prog 38(150):209–230Google Scholar
  48. Hill TL, Eisenberg E, Chen YD, Podolsky RJ (1975) Some self-consistent two-state sliding filament models of muscle contraction. Biophys J 15(4):335–372CrossRefGoogle Scholar
  49. Houdijk H, Bobbert MF, de Haan A (2006) Evaluation of a Hill based muscle model for the energy cost and efficiency of muscular contraction. J Biomech 39(3):536–543CrossRefGoogle Scholar
  50. Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7(1):255–318Google Scholar
  51. Ishikawa M, Pakaslahti J, Komi PV (2007) Medial gastrocnemius muscle behavior during human running and walking. Gait Posture 25(3):380–384CrossRefGoogle Scholar
  52. Ito D, Tanaka E, Yamamoto S (2010) A novel constitutive model of skeletal muscle taking into account anisotropic damage. J Mech Behav Biomed Mater 3(1):85–93CrossRefGoogle Scholar
  53. Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J (2012) Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. doi: 10.1002/hbm.22099
  54. Johansson T, Meier P, Blickhan R (2000) A finite-element model for the mechanical analysis of skeletal muscles. J Theor Biol 206(1):131–149Google Scholar
  55. Jones DK, Knösche TR, Turner R (2012) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage. doi: 10.1016/j.neuroimage.2012.06.081
  56. Kan JH, Heemskerk AM, Ding Z, Gregory A, Mencio G, Spindler K, Damon BM (2009) DTI-based muscle fiber tracking of the quadriceps mechanism in lateral patellar dislocation. J Magn Reson Imaging 29(3):663–670CrossRefGoogle Scholar
  57. Kim SY, Boynton EL, Ravichandiran K, Fung LY, Bleakney R, Agur AM (2007) Three-dimensional study of the musculotendinous architecture of supraspinatus and its functional correlations. Clin Anat 20(6):648–655CrossRefGoogle Scholar
  58. Leon LM, Liebgott B, Agur AM, Norwich KH (2006) Computational model of the movement of the human muscles of mastication during opening and closing of the jaw. Comput Methods Biomech Biomed Eng 9(6):387–398CrossRefGoogle Scholar
  59. Lichtwark GA, Wilson AM (2005) A modified Hill muscle model that predicts muscle power output and efficiency during sinusoidal length changes. J Exp Biol 208(15):2831–2843CrossRefGoogle Scholar
  60. Lieber RL, Blevins FT (1989) Skeletal muscle architecture of the rabbit hindlimb: Functional implications of muscle design. J Morphol 199(1):93–101CrossRefGoogle Scholar
  61. Lu YT, Beldie L, Walker B, Richmond S, Middleton J (2011) Parametric study of a Hill-type hyperelastic skeletal muscle model. Proc Inst Mech Eng H J Eng Med 225(5):437–447CrossRefGoogle Scholar
  62. Maas H, Baan GC, Huijing PA (2001) Intermuscular interaction via myofascial force transmission: effects of tibialis anterior and extensor hallucis longus length on force transmission from rat extensor digitorum longus muscle. J Biomech 34(7): 927–940Google Scholar
  63. McMahon TA (1984) Muscles, reflexes, and locomotion. Princeton University Press, PrincetonGoogle Scholar
  64. Mihata T, Gates J, McGarry MH, Lee J, Kinoshita M, Lee TQ (2009) Effect of rotator cuff muscle imbalance on forceful internal impingement and peel-back of the superior labrum: a cadaveric study. Am J Sport Med 37(11):2222–2227CrossRefGoogle Scholar
  65. Monti RJ, Roy RR, Zhong H, Edgerton VR (2003) Mechanical properties of rat soleus aponeurosis and tendon during variable recruitment in situ. J Exp Biol 206(19):3437–3445CrossRefGoogle Scholar
  66. Mörl F, Siebert T, Schmitt S, Blickhan R, Günther M (2012) Electro-mechanical delay in Hill-type muscle models. J Mech Med Biol 12(05):1250085-1-1250085-18Google Scholar
  67. Oomens CW, Maenhout M, van Oijen CH, Drost MR, Baaijens FP (2003) Finite element modelling of contracting skeletal muscle. Philos Trans R Soc B 358(1437):1453–1460CrossRefGoogle Scholar
  68. Osth J, Brolin K, Happee R (2011) Active muscle response using feedback control of a finite element human arm model. Comput Methods Biomech Biomed Eng 15(4):347–361CrossRefGoogle Scholar
  69. Pandy MG (2001) Computer modelling and simulation of human movement. Annu Rev Biomed Eng 3(1):245–273CrossRefGoogle Scholar
  70. Prado LG, Makarenko I, Andresen C, Krüger M, Opitz CA, Linke WA (2005) Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol 126(5):461–480CrossRefGoogle Scholar
  71. Ranatunga KW, Thomas PE (1990) Correlation between shortening velocity, force–velocity relation and histochemical fibre-type composition in rat muscles. J Muscle Res Cell Motil 11(3): 240–250Google Scholar
  72. Ravichandiran K, Ravichandiran M, Oliver ML, Singh KS, McKee NH, Agur AM (2009) Determining physiological cross-sectional area of extensor carpi radialis longus and brevis as a whole and by regions using 3D computer muscle models created from digitized fiber bundle data. Comput Meth Prog Biomed 95(3):203–212CrossRefGoogle Scholar
  73. Rode C, Siebert T, Blickhan R (2009a) Titin-induced force enhancement and force depression: a ‘sticky-spring’ mechanism in muscle contractions? J Theor Biol 259(2):350–360CrossRefGoogle Scholar
  74. Rode C, Siebert T, Herzog W, Blickhan R (2009b) The effects of parallel and series elastic components on the active cat soleus force-length relationship. J Mech Med Biol 09(01):105–122CrossRefGoogle Scholar
  75. Röhrle O (2010) Simulating the electro-mechanical behavior of skeletal muscles. Comput Sci Eng 12(6):48–58CrossRefGoogle Scholar
  76. Röhrle O, Davidson JB, Pullan AJ (2008) Bridging scales: a three-dimensional electromechanical finite element model of skeletal muscle. SIAM J Sci Comput 30(6):2882–2904MathSciNetCrossRefMATHGoogle Scholar
  77. Röhrle O, Davidson JB, Pullan AJ (2012) A physiologically based, multi-scale model of skeletal muscle structure and function. Front Physiol 3(358):1–14Google Scholar
  78. Rome LC, Sosnicki AA, Gible DO (1990) Maximum velocity of shortening of three fibre types from horse soleus muscle: implications for scaling with body size. J Physiol 431:173–185Google Scholar
  79. Rosatelli AL, Ravichandiran K, Agur AM (2008) Three-dimensional study of the musculotendinous architecture of lumbar multifidus and its functional implications. Clin Anat 21(6):539–546CrossRefGoogle Scholar
  80. Schwenzer NF, Steidle G, Martirosian P, Schraml C, Springer F, Claussen CD, Schick F (2009) Diffusion tensor imaging of the human calf muscle: distinct changes in fractional anisotropy and mean diffusion due to passive muscle shortening and stretching. NMR Biomed 22(10):1047–1053Google Scholar
  81. Scott SH, Brown IE, Loeb GE (1996) Mechanics of feline soleus: I. Effect of fascicle length and velocity on force output. J Muscle Res Cell Motil 17(2):207–219CrossRefGoogle Scholar
  82. Siebert T, Rode C, Herzog W, Till O, Blickhan R (2008) Nonlinearities make a difference: comparison of two common Hill-type models with real muscle. Biol Cybern 98(2):133–143MathSciNetCrossRefMATHGoogle Scholar
  83. Siebert T, Günther M, Blickhan R (2012a) A 3D-geometric model for the deformation of a transversally loaded muscle. J Theor Biol 298:116–121CrossRefGoogle Scholar
  84. Siebert T, Till O, Blickhan R (2012b) Work partitioning of transversally loaded muscle: Experimentation and simulation. Comput Methods Biomech Biomed Eng 1–13 (in press)Google Scholar
  85. Silva MT, Pereira AF, Martins JM (2011) An efficient muscle fatigue model for forward and inverse dynamic analysis of human movements. Procedia IUTAM 2(1):262–274CrossRefGoogle Scholar
  86. Sinha U, Sinha S, Hodgson JA, Edgerton RV (2011) Human soleus muscle architecture at different ankle joint angles from magnetic resonance diffusion tensor imaging. J Appl Physiol 110(3): 807–819Google Scholar
  87. Stark H, Schilling N (2010) A novel method of studying fascicle architecture in relaxed and contracted muscles. J Biomech 43(15):2897–2903CrossRefGoogle Scholar
  88. Tang CY, Tsui CP, Stojanovic B, Kojic M (2007) Finite element modelling of skeletal muscles coupled with fatigue. Int J Mech Sci 49(10):1179–1191CrossRefGoogle Scholar
  89. Tang CY, Zhang G, Tsui CP (2009) A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. J Biomech 42(7):865–872CrossRefGoogle Scholar
  90. Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65(6):1532–1556CrossRefGoogle Scholar
  91. van Noten P, van Leemputte M (2011) The effect of muscle length on force depression after active shortening in soleus muscle of mice. Eur J Appl Physiol 111(7):1361–1367CrossRefGoogle Scholar
  92. van Donkelaar CC, Willems PJ, Muijtjens AM, Drost MR (1999) Skeletal muscle transverse strain during isometric contraction at different lengths. J Biomech 32(8):755–762 Google Scholar
  93. Vos SB, Jones DK, Jeurissen B, Viergever MA, Leemans A (2012) The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain. NeuroImage 59(3):2208–2216Google Scholar
  94. Wank V (1996) Modellierung und Simulation von Muskelkontraktionen für die Diagnose von Kraftfähigkeiten, 1st edn. Sport und Buch Strauss, KölnGoogle Scholar
  95. Williams W (2011) Huxley’s model of muscle contraction with compliance. J Elast 105(1–2):365–380Google Scholar
  96. Wilson AM, McGuigan MP, Su A, van den Bogert AJ (2001) Horses damp the spring in their step. Nature 414(6866):895–899CrossRefGoogle Scholar
  97. Winter D (1993) Optische Verschiebungsmessung nach dem Objektrasterprinzip mit Hilfe eines flächenorientierten Ansatzes. Ph.D. thesis, Technische Universität Carolo-Wilhelmina zu BraunschweigGoogle Scholar
  98. Winters JM (1990) Hill-based muscle models: A systems engineering perspective. In: Winters JM, Woo SL-Y (eds) Multiple muscle systems. Biomechanics and movement organization. Springer, New York, pp 69–93CrossRefGoogle Scholar
  99. Wrobel LC, Ginalski MK, Nowak AJ, Ingham DB, Fic AM (2010) An overview of recent applications of computational modelling in neonatology. Philos Trans R Soc A 368(1920):2817–2834MathSciNetCrossRefMATHGoogle Scholar
  100. Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359–411Google Scholar
  101. Zhang J, Zhang G, Morrison B, Mori S, Sheikh KA (2008) Magnetic resonance imaging of mouse skeletal muscle to measure denervation atrophy. Exp Neurol 212(2):448–457CrossRefGoogle Scholar
  102. Zöllner AM, Abilez OJ, Böl M, Kuhl E (2012) Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis. PLOS ONE 7(10):1–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Markus Böl
    • 1
  • Kay Leichsenring
    • 2
  • Christine Weichert
    • 1
  • Maike Sturmat
    • 1
  • Philipp Schenk
    • 2
  • Reinhard Blickhan
    • 2
  • Tobias Siebert
    • 2
    • 3
  1. 1.Institute of Solid MechanicsTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Institute of Motion ScienceFriedrich-Schiller-Universität JenaJenaGermany
  3. 3.University of StuttgartDepartment of Sport and Motion SciencestuttgartGermany

Personalised recommendations