Biomechanics and Modeling in Mechanobiology

, Volume 12, Issue 5, pp 1053–1071 | Cite as

Mechanics of the mitral valve

A critical review, an in vivo parameter identification, and the effect of prestrain
  • Manuel K. Rausch
  • Nele Famaey
  • Tyler O’Brien Shultz
  • Wolfgang Bothe
  • D. Craig Miller
  • Ellen Kuhl
Original Paper

Abstract

Alterations in mitral valve mechanics are classical indicators of valvular heart disease, such as mitral valve prolapse, mitral regurgitation, and mitral stenosis. Computational modeling is a powerful technique to quantify these alterations, to explore mitral valve physiology and pathology, and to classify the impact of novel treatment strategies. The selection of the appropriate constitutive model and the choice of its material parameters are paramount to the success of these models. However, the in vivo parameters values for these models are unknown. Here, we identify the in vivo material parameters for three common hyperelastic models for mitral valve tissue, an isotropic one and two anisotropic ones, using an inverse finite element approach. We demonstrate that the two anisotropic models provide an excellent fit to the in vivo data, with local displacement errors in the sub-millimeter range. In a complementary sensitivity analysis, we show that the identified parameter values are highly sensitive to prestrain, with some parameters varying up to four orders of magnitude. For the coupled anisotropic model, the stiffness varied from 119,021 kPa at 0 % prestrain via 36 kPa at 30 % prestrain to 9 kPa at 60 % prestrain. These results may, at least in part, explain the discrepancy between previously reported ex vivo and in vivo measurements of mitral leaflet stiffness. We believe that our study provides valuable guidelines for modeling mitral valve mechanics, selecting appropriate constitutive models, and choosing physiologically meaningful parameter values. Future studies will be necessary to experimentally and computationally investigate prestrain, to verify its existence, to quantify its magnitude, and to clarify its role in mitral valve mechanics.

Keywords

Mitral valve Constitutive modeling  Inverse finite element analysis Parameter identification  Prestrain  Sensitivity analysis 

Notes

Acknowledgments

The authors thank Neil B. Ingels for designing the experimental study; John-Peder Escobar Kvitting and Julia C. Swanson for performing the surgical procedures; Paul Chang, Eleazar P. Briones, Lauren R. Davis, and Kathy N. Vo for assisting during the surgery; Maggie Brophy and Sigurd Hartnett for digitizing marker images; and George T. Daughters III for computing four-dimensional marker coordinates data biplane two-dimensional images. This study was supported by the Stanford University BioX Fellowship to Manuel Rausch, by the Deutsche Herzstiftung Research Grant S/06/07 to Wolfgang Bothe, by the US National Institutes of Health grants R01 HL29589 and R01 HL67025 to D. Craig Miller, and by the US National Science Foundation CAREER award CMMI 0952021 and INSPIRE grant 1233054 to Ellen Kuhl.

References

  1. Abaqus 6.9. (2009) Analysis user’s manual. SIMULIA, Dassault SystèmesGoogle Scholar
  2. Amini R, Eckert CE, Koomalsingh K, McGarvey J, Minakawa M, Gorman JH, Gorman RC, Sacks MS (2012) On the in vivo deformation of the mitral valve anterior leaflet: effects of annular geometry and referential configuration. Ann Biomed Eng 40:1455–1467CrossRefGoogle Scholar
  3. Bothe W, Kuhl E, Kvitting JP, Rausch MK, Göktepe S, Swanson JC, Farahmandnia S, Ingels NB, Miller DC (2011) Rigid, complete annuloplasty rings increase anterior mitral valve leaflet strains in the normal beating ovine heart. Circulation 124:S81–S96CrossRefGoogle Scholar
  4. Bothe W, Rausch MK, Kvitting JP, Echtner DK, Walther M, Ingels NB, Kuhl E, Miller DC (2012) How do annuloplasty rings affect mitral annular strains in the normal beating ovine heart? Circulation 126:S231–S238CrossRefGoogle Scholar
  5. Carpentier A, Adams DH, Filsoufi F (2010) Carpentier’s reconstructive valve surgery. From valve analysis to valve reconstruction. Saunders Elsevier, MissouriGoogle Scholar
  6. Chaput M, Handschumacher MD, Guerrero JL, Holmvang G, Dal-Bianco JP, Sullivan S, Vlahakes GJ, Hung J, Levine RA (2009) Leducq Foundation MITRAL transatlantic network mitral leaflet adaptation to ventricular remodeling: prospective changes in a model of ischemic mitral regurgitation. Circulation 120:S99–S103CrossRefGoogle Scholar
  7. Cochran RP, Kunzelman KS, Chuong CJ, Sacks MS, Eberhart RC (1991) Nondestructive analysis of mitral valve collagen fiber orientation. Am Soc Artif Organs Trans 37:M447–M448Google Scholar
  8. Dal-Bianco JP, Aikawa E, Bischoff J, Guerrero JL, Handschumacher MD, Sullivan S, Johnson B, Titus JS, Iwamoto Y, Wylie-Sears J, Levine RA, Carpentier A (2009) Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation 120:334–342CrossRefGoogle Scholar
  9. Einstein DR, Reinhall P, Nicosia M, Cochran RP, Kunzelman K (2003) Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput Methods Biomech Biomed Eng 6:33–44CrossRefGoogle Scholar
  10. Einstein DR, Kunzelman KS, Reinhall PG, Cochran RP, Nicosia MA (2004) Haemodynamic determinants of the mitral valve closure sound: a finite element study. Med Biol Eng Comput 42:832–846CrossRefGoogle Scholar
  11. Famaey N, Vander Sloten J, Kuhl E (2013) A three-constituent damage model for arterial clamping in computer-assisted surgery. Biomech Model Mechanobiol. doi: 10.1007/s10237-012-0386-7
  12. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35CrossRefGoogle Scholar
  13. Göktepe S, Bothe W, Kvitting JP, Swanson J, Ingels NB, Miller DC, Kuhl E (2010) Anterior mitral leaflet curvature in the beating ovine heart. A case study using videofluoroscopic markers and subdivision surfaces. Biomech Model Mechanobiol 9:281–293CrossRefGoogle Scholar
  14. Grashow JS, Yoganathan AP, Sacks MS (2006) Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiological strain rates. Ann Biomed Eng 34:315–325CrossRefGoogle Scholar
  15. Grashow JS, Sacks MS, Liao J, Yoganathan AP (2006) Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann Biomed Eng 34:1509–1518CrossRefGoogle Scholar
  16. He Z, Ritchie J, Grashow JS, Sacks MS, Yoganathan AP (2005) In vitro dynamic strain behavior of the mitral valve posterior leaflet. J Biomech Eng 127:504–511CrossRefGoogle Scholar
  17. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for anterial wall mechanics and a comparative study of material models. J Elast 61:1–48MathSciNetCrossRefMATHGoogle Scholar
  18. Itoh A, Krishnamurthy G, Swanson J, Ennis D, Bothe W, Kuhl E, Karlsson M, Davis L, Miller DC, Ingels NB (2009) Active stiffening of mitral valve leaflets in the beating heart. Am J Physiol Heart Circ Physiol 296:H1766–H1773CrossRefGoogle Scholar
  19. Jassar AS, Brinster CJ, Vergnat M, Robb D, Eperjesi TJ, Pouch AM, Cheung AT, Weiss SJ, Acker MA, Gorman JH, Gorman RC, Jackson BM (2011) Quantitative mitral valve modeling using real-time three-dimensional echocardiography: technique and repeatability. Ann Thorac Surg 91:165–171CrossRefGoogle Scholar
  20. Krishnamurthy G, Ennis DB, Itoh A, Bothe W, Swanson JC, Karlsson M, Kuhl E, Miller DC, Ingels NB (2008) Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am J Physiol Heart Circ Physiol 295:H1141–H1149CrossRefGoogle Scholar
  21. Krishnamurthy G, Itoh A, Swanson JC, Bothe W, Karlsson M, Kuhl E, Miller DC, Ingels NB (2009) Regional stiffening of the mitral valve anterior leaflet in the beating heart. J Biomech 42:2697–2701CrossRefGoogle Scholar
  22. Krishnamurthy G, Itoh A, Bothe W, Swanson J, Kuhl E, Karlsson M, Miller DC, Ingels NB (2009) Stress-strain behavior of mitral valve leaflets in the beating ovine heart. J Biomech 42:1909–1916CrossRefGoogle Scholar
  23. Kunzelman KS, Cochran RP (1992) Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J Card Surg 7:71–78CrossRefGoogle Scholar
  24. Kunzelman KS, Cochran RP, Chuong C, Ring WS, Verrier ED, Eberhart RD (1993) Finite element analysis of the mitral valve. J Heart Valve Dis 2:326–340Google Scholar
  25. Kunzelman KS, Cochran RP, Murphree SS, Ring WS, Verrier ED, Eberhart RC (1993) Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour. J Heart Valve Dis 2:236–244Google Scholar
  26. Kunzelman KS, Reimink MS, Cochran RP (1997) Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc Surg 5:427–434CrossRefGoogle Scholar
  27. Kunzelman KS, Quick DW, Cochran RP (1998) Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Ann Thorac Surg 66:S198–205CrossRefGoogle Scholar
  28. Kvitting JP, Bothe W, Göktepe S, Rausch MK, Swanson JC, Kuhl E, Ingels NB, Miller DC (2010) Anterior mitral leaflet curvature during the cardiac cycle in the normal ovine heart. Circulation 122: 1683–1689CrossRefGoogle Scholar
  29. Liao J, Yang L, Grashow JS, Sacks MS (2007) The relation between collagen fibril kinematics and mechanical properties of the mitral valve anterior leaflet. J Biomech Eng 129:78–87CrossRefGoogle Scholar
  30. Libby P, Bonow RO, Man DL, Zipes DP (2008) Braunwald’s heart disease. A textbook of cardiovascular medicine. Saunders Elsevier, PhiladelphiaGoogle Scholar
  31. Maisano F, Redaelli A, Pennati G, Fumero R, Torracca L, Alfieri O (1999) The hemodynamic effects of double-orifice valve repair for mitral regurgitation: a 3D computational model. Eur J Cardiothorac Surg 15:419–425CrossRefGoogle Scholar
  32. Maisano F, Redaelli A, Soncini M, Votta E, Arcobaso L, Alfieri O (2005) An annular prosthesis for the treatment of functional mitral regurgitation: finite element model analysis of a dog bone-shaped ring prosthesis. Ann Thorac Surg 79:1268–1275CrossRefGoogle Scholar
  33. May-Newman K, Yin FC (1995) Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am J Physiol 269:H1319–H1327Google Scholar
  34. May-Newman K, Yin FC (1998) A constitutive law for mitral valve tissue. J Biomech Eng 120:38–47CrossRefGoogle Scholar
  35. Mulholland DL, Gotlieb AI (1997) Cardiac valve interstitial cells: regulator of valve structure and function. Cardiovasc Pathol 6:167–174CrossRefGoogle Scholar
  36. Nordrum IS, Skallerud B (2012) Smooth muscle in the human mitral valve: extent and implications for dynamic modelling. Acta Pathologica, Microbiologica et Immunologica Scandinavica 120:484–494CrossRefGoogle Scholar
  37. Opie LH (2003) Heart physiology: from cell to circulation. Lippincott Williams & Wilkins, PennsylvaniaGoogle Scholar
  38. Padala M, Hutchison RA, Croft LR, Jimenez JH, Gorman RC, Gorman JH, Sacks MS, Yoganathan AP (2009) Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann Thorac Surg 88:1499–1504CrossRefGoogle Scholar
  39. Pouch AM, Xu C, Yushkevich P, Jassar AS, Vergnat M, Gorman JH, Gorman RC, Jackson BM (2012) Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J Biomech 45:903–907CrossRefGoogle Scholar
  40. Prot V, Skallerud B, Holzapfel GA (2007) Transversely isotropic membrane shells with application to mitral valve mechanics. Constitutive modeling and finite element implementation. Int J Numer Methods Eng 71:987–1008MathSciNetCrossRefMATHGoogle Scholar
  41. Prot V, Haaverstad R, Skallerud B (2009) Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution. Biomech Model Mechanobiol 8:43–55CrossRefGoogle Scholar
  42. Prot V, Skallerud B (2009) Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers. Comput Mech 43:353–368CrossRefMATHGoogle Scholar
  43. Rabbah JP, Saikrishnan N, Yoganathan AP (2013) A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann Biomed Eng. doi: 10.1007/s10439-012-0651-z
  44. Rausch MK, Kuhl E (2013) On the effect of prestrain and residual stress in thin biological membranes. submitted for publicationGoogle Scholar
  45. Rausch MK, Bothe W, Kvitting JPE, Göktepe S, Miller DC, Kuhl E (2011) In vivo dynamic strains of the ovine anterior mitral valve leaflet. J Biomech 44:1149–1157CrossRefGoogle Scholar
  46. Rausch MK, Bothe W, Kvitting JPE, Swanson JC, Ingels NB, Miller DC, Kuhl E (2011) Characterization of mitral valve annular dynamics in the beating heart. Ann Biomed Eng 39:1690–1702CrossRefGoogle Scholar
  47. Rausch MK, Bothe W, Kvitting JP, Swanson JC, Miller DC, Kuhl E (2012) Mitral valve annuloplasty—a quantitative clinical and mechanical comparison of different annuloplasty devices. Ann Biomed Eng 40:750–761CrossRefGoogle Scholar
  48. Rausch MK, Tibayan FA, Miller DC, Kuhl E (2012) Evidence of adaptive mitral leaflet growth. J Mech Behav Biomed Mater 15:208–217CrossRefGoogle Scholar
  49. Reimink MS, Kunzelman KS, Verrier ED, Cochran RP (1995) The effect of anterior chordal replacement on mitral valve function and stresses. A finite element study. Am Soc Artif Intern Organs 41:M754–762CrossRefGoogle Scholar
  50. Sacks MS, He Z, Baijens L, Wanant S, Shah P, Sugimoto H, Yoganathan AP (2002) Surface strains in the anterior leaflet of the functioning mitral valve. Ann Biomed Eng 30:78–87CrossRefGoogle Scholar
  51. Sacks MS, Enomoto Y, Graybill JR, Merryman WD, Zeeshan A, Yoganathan AP, Levy RJ, Gorman RC, Gorman JH (2006) In-vivo dynamic deformation of the mitral valve anterior leaflet. Ann Thorac Surg 82:1369–1377CrossRefGoogle Scholar
  52. Sacks MS, Yoganathan AP (2007) Heart valve function: a biomechanical perspective. Philos Trans R Soc London B 362:1369–1391CrossRefGoogle Scholar
  53. Salgo IS, Gorman JH, Gorman RC, Jackson BM, Bowen FW, Plappert T, Sutton St John MG, Edmunds LH Jr (2002) Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106:711–717CrossRefGoogle Scholar
  54. Siefert AW, Jimenez JH, West DS, Koomalsingh KJ, Gorman RC, Gorman JH, Yoganathan AP (2012) In-vivo transducer to measure dynamic mitral annular forces. J Biomech 45:1514–1516CrossRefGoogle Scholar
  55. Skallerud B, Prot V, Nordrum IS (2011) Modeling active muscle contraction in mitral valve leaflets during systole: a first approach. Biomech Model Mechanobiol 10:11–26CrossRefGoogle Scholar
  56. Taylor MT, Batten P, Brand NJ, Thomas PS, Yacoub MH (2003) The cardiac valve interstitial cell. Int J Biochem Cell Biol 35:113–118 CrossRefGoogle Scholar
  57. van Vlimmeren MAA, Driessen-Mol A, Oomens CWJ, Baaijens FPT (2012) Passive and active contributions to generated force and retraction in heart valve tissue engineering. Biomech Model Mechanobiol 11:1015–1027CrossRefGoogle Scholar
  58. Votta E, Maisano F, Soncini M, Redaelli A, Montevecchi FM, Alfieri O (2002) 3-D computational analysis of the stress distribution on the leaflets after edge-to-edge repair of mitral regurgitation. J Heart Valve Dis 11:810–822Google Scholar
  59. Votta E, Maisano F, Bolling SF, Alfieri O, Montevecchi FM, Redaelli A (2007) The geoform disease-specific annuloplasty system. Ann Thorac Surg 84:92–101CrossRefGoogle Scholar
  60. Weinberg EJ, Kaazempur-Mofrad MR (2006) A finite shell element for heart mitral valve leaflet mechanics, with large deformations and 3D constitutive material model. J Biomech 40:705–711CrossRefGoogle Scholar
  61. Xu C, Brinster CJ, Jassar AS, Vergnat M, Eperjesi TJ, Gorman RC, Gorman JH, Jackson BM (2010) A novel approach to in vivo mitral valve stress analysis. Am J Physiol Heart Circ Physiol 299: H1790–H1794CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manuel K. Rausch
    • 1
  • Nele Famaey
    • 2
  • Tyler O’Brien Shultz
    • 1
  • Wolfgang Bothe
    • 3
  • D. Craig Miller
    • 4
  • Ellen Kuhl
    • 5
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Mechanical EngineeringKU LeuvenLeuvenBelgium
  3. 3.Department of Cardiothoracic SurgeryFriedrich Schiller UniversityJenaGermany
  4. 4.Department of Cardiothoracic SurgeryStanford UniversityStanfordUSA
  5. 5.Departments of Mechanical Engineering, Bioengineering, and Cardiothoracic SurgeryStanford UniversityStanfordUSA

Personalised recommendations