Biomechanics and Modeling in Mechanobiology

, Volume 12, Issue 5, pp 869–887

A computational framework for investigating the positional stability of aortic endografts

  • Anamika Prasad
  • Nan Xiao
  • Xiao-Yan Gong
  • Christopher K. Zarins
  • C. Alberto Figueroa
Original Paper


Endovascular aneurysm repair (Greenhalgh in N Engl J Med 362(20):1863–1871, 2010) techniques have revolutionized the treatment of thoracic and abdominal aortic aneurysm disease, greatly reducing the perioperative mortality and morbidity associated with open surgical repair techniques. However, EVAR is not free of important complications such as late device migration, endoleak formation and fracture of device components that may result in adverse events such as aneurysm enlargement, need for long-term imaging surveillance and secondary interventions or even death. These complications result from the device inability to withstand the hemodynamics of blood flow and to keep its originally intended post-operative position over time. Understanding the in vivo biomechanical working environment experienced by endografts is a critical factor in improving their long-term performance. To date, no study has investigated the mechanics of contact between device and aorta in a three-dimensional setting. In this work, we developed a comprehensive Computational Solid Mechanics and Computational Fluid Dynamics framework to investigate the mechanics of endograft positional stability. The main building blocks of this framework are: (1) Three-dimensional non-planar aortic and stent-graft geometrical models, (2) Realistic multi-material constitutive laws for aorta, stent, and graft, (3) Physiological values for blood flow and pressure, and (4) Frictional model to describe the contact between the endograft and the aorta. We introduce a new metric for numerical quantification of the positional stability of the endograft. Lastly, in the results section, we test the framework by investigating the impact of several factors that are clinically known to affect endograft stability.


Stent-graft Migration Aneurysm Friction CSM CFD Fixation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrens J, Geveci B et al (2005) ParaView: an end-user tool for large data visualizationGoogle Scholar
  2. Albertini JN, Kalliafas S et al (2000) Anatomical risk factors for proximal perigraft endoleak and graft migration following endovascular repair of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 19(3): 308–312CrossRefGoogle Scholar
  3. Amblard A, Berre HWL et al (2009) Analysis of type I endoleaks in a stented abdominal aortic aneurysm. Med Eng Phys 31(1): 27–33CrossRefGoogle Scholar
  4. Arko FR, Heikkinen M et al (2005) Iliac fixation length and resistance to in-vivo stent-graft displacement. J Vasc Surg 41(4): 664–670CrossRefGoogle Scholar
  5. Brewster DC, Cronenwett JL et al (2003) Guidelines for the treatment of abdominal aortic aneurysms: report of a subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery. J Vasc Surg 37(5): 1106–1117CrossRefGoogle Scholar
  6. Calvo B, Pena E et al (2007) An uncoupled directional damage model for fibred biological soft tissues Formulation and computational aspects. Int J Numer Methods Eng 69(10): 2036–2057MathSciNetCrossRefMATHGoogle Scholar
  7. Chaboche JL (1988) Continuum damage mechanics: part I: general concepts. J Appl Mech 55(1): 59–64CrossRefGoogle Scholar
  8. Corbett TJ, Molony DS et al (2011) The effect of vessel material properties and pulsatile wall motion on the fixation of a proximal stent of an endovascular graft. Med Eng Phys 33(1): 106–111CrossRefGoogle Scholar
  9. De Bruin JL, Baas AF et al (2010) Long-term outcome of open or endovascular repair of abdominal aortic aneurysm. N Engl J Med 362(20): 1881–1889CrossRefGoogle Scholar
  10. Ferruzzi J, Vorp DA et al (2011) On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms . J R Soc Interface 8(56): 435–450CrossRefGoogle Scholar
  11. Figueroa CA, Vignon-Clementel IE et al (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195(41–43): 5685–5706MathSciNetCrossRefMATHGoogle Scholar
  12. Figueroa CA, Baek S et al (2009a) A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng 198(45–46): 3583–3602MathSciNetCrossRefMATHGoogle Scholar
  13. Figueroa CA, Taylor CA et al (2009b) Magnitude and direction of pulsatile displacement forces acting on thoracic aortic endografts. J Endovasc Ther 16(3): 350–358CrossRefGoogle Scholar
  14. Figueroa CA, Taylor CA et al (2009c) Effect of curvature on displacement forces acting on aortic endografts: a 3-dimensional computational analysis. J Endovasc Ther 16(3): 284–294CrossRefGoogle Scholar
  15. Fleming C, Whitlock EP et al (2005) Screening for abdominal aortic aneurysm: a best-evidence systematic review for the US preventive services task force. Ann Intern Med 142(3): 203–211CrossRefGoogle Scholar
  16. Fulton JJ, Farber MA et al (2006) Effect of challenging neck anatomy on mid-term migration rates in AneuRx endografts. J vasc surg 44(5): 932–937CrossRefGoogle Scholar
  17. Gee MW, Förster C et al (2010) A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Methods Biomed Eng 26(1): 52–72CrossRefMATHGoogle Scholar
  18. Gillum RF (1995) Epidemiology of aortic aneurysm in the United States. J Clin Epidemiol 48(11): 1289–1298CrossRefGoogle Scholar
  19. Govindjee S, Mihaic PA (1998) Computational methods for inverse deformations in quasi incompressible finite elasticity. Int J Numer Methods Eng 43(5): 821–838CrossRefMATHGoogle Scholar
  20. Greenhalgh RM, Brown LC et al (2010) Endovascular versus open repair of abdominal aortic aneurysm. N Engl J Med 362(20): 1863–1871CrossRefGoogle Scholar
  21. Heikkinen MA, Alsac JM et al (2006) The importance of iliac fixation in prevention of stent graft migration. J Vasc Surg 43(6): 1130–1137CrossRefGoogle Scholar
  22. Hobo R, Kievit J et al (2007) Influence of severe infrarenal aortic neck angulation on complications at the proximal neck following endovascular AAA repair: a EUROSTAR study. J Endovasc Ther 14(1): 1–11CrossRefGoogle Scholar
  23. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. DoverGoogle Scholar
  24. Humphrey JD (2003) Continuum biomechanics of soft biological tissues”. Proceed R Soc A Mathe Phys Eng Sci 459(2029): 3–46MathSciNetCrossRefMATHGoogle Scholar
  25. Humphrey JD, Taylor CA (2008) Intracranial and abdominal aortic aneurysms: similarities, differences, and Need for a new class of computational models. Ann Rev Biomed Eng 10(1): 221–246CrossRefGoogle Scholar
  26. Hutchings IM (1992) Tribology: frition and wear of engineering materials. Elsevier Limited, LondonGoogle Scholar
  27. Johnson KL (1987) Contact mechanics. Cambridge University Press, CambridgeGoogle Scholar
  28. Kannan RY, Salacinski HJ et al (2005) Current status of prosthetic bypass grafts: a review. J Biomed Mater Res Part B Appl Biomater 74(1): 570–581CrossRefGoogle Scholar
  29. Kleinstreuer C, Li Z et al (2008) Computational mechanics of nitinol stent grafts. J Biomech 41(11): 2370–2378CrossRefGoogle Scholar
  30. Leurs LJ, Bell R et al (2004) Endovascular treatment of thoracic aortic diseases: Combined experience from the EUROSTAR and United Kingdom Thoracic Endograft Registries. J Vasc Surg 40(4): 670–679CrossRefGoogle Scholar
  31. Li Z, Kleinstreuer C (2006) Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model. J Biomech 39(12): 2264–2273CrossRefGoogle Scholar
  32. Li ZH, Kleinstreuer C (2005) Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med Eng Phys 27(5): 369–382CrossRefGoogle Scholar
  33. Liffman K, Sutalo ID et al (2006) Movement and dislocation of modular stent-grafts due to pulsatile flow and the pressure difference between the stent-graft and the aneurysm sac. J Endovasc Ther 13(1): 51–61CrossRefGoogle Scholar
  34. Malina M, Lindblad B et al (1998) Endovascular AAA exclusion: will stents with hooks and barbs prevent stent-graft migration?. J Endovasc Surg 5(4): 310–317CrossRefGoogle Scholar
  35. Marlow R (2003) A general first-invariant hyperelastic constitutive model. Taylor & Francis, UKGoogle Scholar
  36. Martins P, Jorge RMN et al (2006) A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain 42(3): 135–147CrossRefGoogle Scholar
  37. Morris L, Delassus P et al (2004) A mathematical model to predict the in vivo pulsatile drag forces acting on bifurcated stent grafts used in endovascular treatment of abdominal aortic aneurysms (AAA). J Biomech 37(7): 1087–1095CrossRefGoogle Scholar
  38. Murphy EH, Johnson ED et al (2007) Device-specific resistance to in vivo displacement of stent-grafts implanted with maximum iliac fixation. J Endovasc Ther 14(4): 585–592CrossRefGoogle Scholar
  39. Oden JT, Martins JAC (1985) Models and computational methods for dynamic friction phenomena. Comput Methods Appl Mech Eng 52(1-3): 527–634MathSciNetCrossRefMATHGoogle Scholar
  40. Olsson C, Thelin S et al (2006) Thoracic aortic aneurysm and dissection. Circulation 114(24): 2611–2618CrossRefGoogle Scholar
  41. Prior AM (1994) Applications of implicit and explicit Finite-Element techniques to metal-forming. J Mater Process Technol 45(1-4): 649–656CrossRefGoogle Scholar
  42. Raghavan M (2000) Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg 31(4): 760–769CrossRefGoogle Scholar
  43. Raghavan ML, Vorp DA (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 33:475–482Google Scholar
  44. Raghavan M, Webster MW et al (1996) Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann Biomed Eng 24(5): 573–582CrossRefGoogle Scholar
  45. Raghavan M, Kratzberg J et al (2006a) Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J Biomech 39(16): 3010–3016CrossRefGoogle Scholar
  46. Raghavan ML, Ma BS et al (2006b) Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann Biomed Eng 34(9): 1414–1419CrossRefGoogle Scholar
  47. Resch T, Malina M et al (2000) The impact of stent design on proximal stent-graft fixation in the abdominal aorta: an experimental study. Eur J Vasc Endovasc Surg 20(2): 190–195CrossRefGoogle Scholar
  48. Roll S, Müller-Nordhorn J et al (2008) Dacron® versus PTFE as bypass materials in peripheral vascular surgery: systematic review and meta-analysis. BMC surg 8(1): 22CrossRefGoogle Scholar
  49. Sampaio SM, Panneton JM et al (2006) Aortic neck dilation after endovascular abdominal aortic aneurysm repair: Should oversizing be blamed?. Ann Vasc Surg 20(3): 338–345CrossRefGoogle Scholar
  50. Simulia abaqus theory manual, version 6.8.Google Scholar
  51. SimVascular (2007) Cardiovascular modeling and simulation application,
  52. Speelman L, Bosboom EMH et al (2009) Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis. J Biomech 42(11): 1713–1719CrossRefGoogle Scholar
  53. Sternbergh WC, Carter G et al (2002) Aortic neck angulation predicts adverse outcome with endovascular abdominal aortic aneurysm repair. J Vasc Surg 35(3): 482–486CrossRefGoogle Scholar
  54. Sternbergh WC, Money SR et al (2004) Influence of endograft oversizing on device migration, endoleak, aneurysm shrinkage, and aortic neck dilation: Results from the Zenith multicenter trial. J Vasc Surg 39(1): 20–26CrossRefGoogle Scholar
  55. Stoeckel D, Pelton A et al (2004) Self-expanding nitinol stents: material and design considerations. Eur Radiol 14(2): 292–301CrossRefGoogle Scholar
  56. Taylor CA, Figueroa CA (2009) Patient-specific modeling of cardiovascular mechanics. Ann Rev Biomed Eng Palo Alto Ann Rev 11: 109–134CrossRefGoogle Scholar
  57. Vad S, Eskinazi A et al (2010) Determination of coefficient of friction for self-expanding stent-grafts. J Biomech Eng-Trans Asme 132(12)Google Scholar
  58. Vande Geest JP, Sacks MS et al (2004) Age dependency of the biaxial biornechanical Behavior of humian abdominal aorta. J Biomech Eng-Trans Asme 126(6): 815–822CrossRefGoogle Scholar
  59. Vande Geest JP, Sacks MS et al (2006) The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech 39(7): 1324–1334CrossRefGoogle Scholar
  60. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2010) Outflow boundary conditions for three-dimensional simulations of non-periodic blood flow and pressur field in deformable arteries. Computer Methods Biomed Eng 13(5): 625–640CrossRefGoogle Scholar
  61. Wriggers P (1995) Finite element algorithms for contact problems. Arch Comput Methods Eng 2(4): 1–49MathSciNetCrossRefGoogle Scholar
  62. Wriggers P (1996) Finite element methods for contact problems with friction. Tribol Int 29(8): 651–658MathSciNetCrossRefGoogle Scholar
  63. Wyss TR, Dick F et al (2011) The influence of thrombus, calcification, angulation, and tortuosity of attachment sites on the time to the first graft-related complication after endovascular aneurysm repair. J Vasc Surg 54(4): 965–971CrossRefGoogle Scholar
  64. Xiong G, Figueroa CA et al (2010) Simulation of blood flow in deformable vessels using subject-specific geometry and assigned variable mechanical wall properties. Int J Numer Methods Biomed Eng 27(7): 1000–1016MathSciNetCrossRefGoogle Scholar
  65. Zarins CK (2003a) Stent graft migration after endovascular aneurysm repair: importance of proximal fixation. J Vasc Surg 38(6): 1264–1272CrossRefGoogle Scholar
  66. Zarins CK (2003b) The US aneurx clinical trial: 6-year clinical update 2002. J Vasc Surg Off Publ Soc Vasc Surg Int Soc Cardiovasc Surg N Am Chap 37(4): 904Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anamika Prasad
    • 1
  • Nan Xiao
    • 1
    • 4
  • Xiao-Yan Gong
    • 3
  • Christopher K. Zarins
    • 2
  • C. Alberto Figueroa
    • 4
  1. 1.Departments of BioengineeringStanford UniversityStanfordUSA
  2. 2.Department of SurgeryStanford UniversityStanfordUSA
  3. 3.Medical Implant Mechanics LLCAlisoViejoUSA
  4. 4.Department of Biomedical EngineeringKing’s College LondonLondonUK

Personalised recommendations