Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 12, Issue 4, pp 717–733 | Cite as

Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall

  • C. Reeps
  • A. Maier
  • J. Pelisek
  • F. Härtl
  • V. Grabher-Meier
  • W. A. Wall
  • M. Essler
  • H.-H. Eckstein
  • M. W. GeeEmail author
Original Paper

Abstract

Both the clinically established diameter criterion and novel approaches of computational finite element (FE) analyses for rupture risk stratification of abdominal aortic aneurysms (AAA) are based on assumptions of population-averaged, uniform material properties for the AAA wall. The presence of inter-patient and intra-patient variations in material properties is known, but has so far not been addressed sufficiently. In order to enable the preoperative estimation of patient-specific AAA wall properties in the future, we investigated the relationship between non-invasively assessable clinical parameters and experimentally measured AAA wall properties. We harvested n = 163 AAA wall specimens (n = 50 patients) during open surgery and recorded the exact excision sites. Specimens were tested for their thickness, elastic properties, and failure loads using uniaxial tensile tests. In addition, 43 non-invasively assessable patient-specific or specimen-specific parameters were obtained from recordings made during surgery and patient charts. Experimental results were correlated with the non-invasively assessable parameters and simple regression models were created to mathematically describe the relationships. Wall thickness was most significantly correlated with the metabolic activity at the excision site assessed by PET/CT (ρ = 0.499, P = 4 × 10−7) and to thrombocyte counts from laboratory blood analyses (ρ = 0.445, P = 3 × 10−9). Wall thickness was increased in patients suffering from diabetes mellitus, while it was significantly thinner in patients suffering from chronic kidney disease (CKD). Elastic AAA wall properties had significant correlations with the metabolic activity at the excision site (PET/CT), with existent calcifications, and with the diameter of the non-dilated aorta proximal to the AAA. Failure properties (wall strength and failure tension) had correlations with the patient’s medical history and with results from laboratory blood analyses. Interestingly, AAA wall failure tension was significantly reduced for patients with CKD and elevated blood levels of potassium and urea, respectively, both of which are associated with kidney disease. This study is a first step to a future preoperative estimation of AAA wall properties. Results can be conveyed to both the diameter criterion and FE analyses to refine rupture risk prediction. The fact that AAA wall from patients suffering from CKD featured reduced failure tension implies an increased AAA rupture risk for this patient group at comparably smaller AAA diameters.

Keywords

Abdominal aortic aneurysm Diameter criterion Finite elements Material properties Wall thickness Wall strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberti KGMM, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetes Med 15(7): 539–553CrossRefGoogle Scholar
  2. Breeuwer M, de Putter S, Kose U, Speelman L, Visser K, Gerritsen F, Hoogeveen R, Krams R, van den Bosch H, Buth J, Gunther T, Wolters B, van Dam E, van de Vosse F (2008) Towards patient-specific risk assessment of abdominal aortic aneurysm. Med Biol Eng Comp 46(11): 1085–1095CrossRefGoogle Scholar
  3. Choke E, Cockerill G, Wilson WRW, Sayed S, Dawson J, Loftus I, Thompson MM (2005) A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg 30(3): 227–244CrossRefGoogle Scholar
  4. CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney disease: improving global outcomes (kdigo) CKD-MBD work group. Kidney Int Suppl 113:1–130Google Scholar
  5. Defawe OD, Hustinx R, Defraigne JO, Limet R, Sakalihasan N (2005) Distribution of F-18 fluorodeoxyglucose (F-18 FDG) in abdominal aortic aneurysm: high accumulation in macrophages seen on PET imaging and immunohistology. Clin Nucl Med 30(5): 340–341CrossRefGoogle Scholar
  6. Doyle BJ, Hoskins PR, McGloughlin TM (2011) Commentary: computational rupture prediction of aaas: what needs to be done next?. J Endovasc Ther 18(2): 226–229CrossRefGoogle Scholar
  7. Fillinger MF, Marra SP, Raghavan ML, Kennedy FE (2003) Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg 37(4): 724–732CrossRefGoogle Scholar
  8. Folco EJ, Sheikine Y, Rocha VZ, Christen T, Shvartz E, Sukhova GK, Di Carli MF, Libby P (2011) Hypoxia but not inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-d-glucose positron emission tomography. J Am Coll Cardiol 58(6): 603–614CrossRefGoogle Scholar
  9. Forsdahl SH, Singh K, Solberg S, Jacobsen BK (2009) Risk factors for abdominal aortic aneurysms. Circulation 119(16): 2202–2208CrossRefGoogle Scholar
  10. Fung YC (1993) Biomechanics—mechanical properties of living tissues, 2nd edn. Springer, New YorkGoogle Scholar
  11. Gasser TC, Görgülü G, Folkesson M, Swedenborg J (2008) Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J Vasc Surg 48(1): 179–188CrossRefGoogle Scholar
  12. Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J (2010) Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur J Vasc Endovasc Surg 40(2): 176–185CrossRefGoogle Scholar
  13. Gee MW, Reeps C, Eckstein HH, Wall WA (2009) Prestressing in finite deformation abdominal aortic aneurysm simulation. J Biomech 42(11): 1732–1739CrossRefGoogle Scholar
  14. Gee MW, Förster C, Wall WA (2010) A computational strategy for prestressing patient specific biomechanical problems under finite deformation. Int J Numer Meth Biomed Eng 26(1): 52–72zbMATHCrossRefGoogle Scholar
  15. Greenhalgh RM (2004) Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: randomised controlled trial. Lancet 364(9437): 843–848CrossRefGoogle Scholar
  16. Holzapfel GA (2000) Nonlinear solid mechanics: a contiuum approach for engineering. Wiley, ChichesterGoogle Scholar
  17. Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc R Soc A 466: 1551–1597MathSciNetzbMATHCrossRefGoogle Scholar
  18. Humphrey JD (2002) Cardiovascular solid mechanics—cells, tissues, and organs. Springer, New YorkCrossRefGoogle Scholar
  19. Humphrey JD, Holzapfel GA (2012) Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J Biomech 45(5): 805–814CrossRefGoogle Scholar
  20. Humphrey JD, Rajagopal KR (2003) A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomech Model Mechanobiol 2(2): 109–126CrossRefGoogle Scholar
  21. Humphrey JD, Taylor CA (2008) Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu Rev Biomed Eng 10(1): 221–246CrossRefGoogle Scholar
  22. Hyhlik-Dürr A, Krieger T, Geisbüsch P, Kotelis D, Able T, Böckler D (2011) Reproducibility of deriving parameters of AAA rupture risk from patient-specific 3D finite element models. J Endovasc Ther 18(3): 289–298CrossRefGoogle Scholar
  23. Kotze C, Groves A, Menezes L, Harvey R, Endozo R, Kayani I, Ell P, Yusuf S (2011) What is the relationship between 18F-FDG aortic aneurysm uptake on PET/CT and future growth rate?. Eur J Nucl Med Mol Imaging 38(8): 1493–1499CrossRefGoogle Scholar
  24. Li ZY, U-King-Im J, Tang TY, Soh E, See TC, Gillard JH (2008) Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J Vasc Surg 47(5): 928–935CrossRefGoogle Scholar
  25. Lim ST, Kim YK, Hwang JK, Kim SD, Park SC, Won YS, Park JS, Kim JI, Yun SS, Moon IS (2011) A clinical consideration of abdominal aortic aneurysm rupture. Korean J Vasc Endovasc Surg 27(3): 103–107CrossRefGoogle Scholar
  26. Maier A, Gee MW, Reeps C, Eckstein HH, Wall WA (2010) Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech Model Mechanobiol 9(5): 511–521CrossRefGoogle Scholar
  27. Maier A, Gee MW, Reeps C, Pongratz J, Eckstein HH, Wall WA (2010) A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann Biomed Eng 38(10): 3124–3134CrossRefGoogle Scholar
  28. Maier A, Essler M, Gee MW, Eckstein HH, Wall WA, Reeps C (2012) Correlation of biomechanics to tissue reaction in aortic aneurysms assessed by finite elements and [18F]-fluorodeoxyglucose-PET/CT. Int J Numer Meth Biomed Eng 28(4): 456–471MathSciNetCrossRefGoogle Scholar
  29. Marini G, Maier A, Reeps C, Eckstein HH, Wall WA, Gee MW (2012) A continuum description of the damage process in the arterial wall of abdominal aortic aneurysms. Int J Numer Meth Biomed Eng 28(1): 87–99MathSciNetzbMATHCrossRefGoogle Scholar
  30. Ockert S, Boeckler D, Allenberg J, Schumacher H (2007) Rupturiertes abdominelles Aortenaneurysma. Gefaesschirurgie 12(5): 379–391CrossRefGoogle Scholar
  31. Okamoto R, Wagenseil J, DeLong W, Peterson S, Kouchoukos N, Sundt T (2002) Mechanical properties of dilated human ascending aorta. Ann Biomed Eng 30(5): 624–635CrossRefGoogle Scholar
  32. Pelisek J, Assadian A, Sarkar O, Eckstein HH, Frank H (2010) Carotid plaque composition in chronic kidney disease: a retrospective analysis of patients undergoing carotid endarterectomy. Eur J Vasc Endovasc Surg 39(1): 11–16CrossRefGoogle Scholar
  33. Pelisek J, Hahntow IN, Eckstein HH, Ockert S, Reeps C, Heider P, Luppa PB, Frank H (2011) Impact of chronic kidney disease on carotid plaque vulnerability. J Vasc Surg 54(6): 1643–1649CrossRefGoogle Scholar
  34. Polzer S, Gasser T, Swedenborg J, Bursa J (2011) The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 41(4): 467–473CrossRefGoogle Scholar
  35. Raghavan ML, Vorp DA (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 33(4): 475–482CrossRefGoogle Scholar
  36. Raghavan ML, Webster MW, Vorp DA (1996) Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann Biomed Eng 24(5): 573–582CrossRefGoogle Scholar
  37. Raghavan ML, Hanaoka MM, Kratzberg JA, Higuchi MdL, da Silva ES (2011a) Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms. J Biomech 44(13): 2501–2507CrossRefGoogle Scholar
  38. Raghavan ML, Lin K, Ramachandran M, Nadereishvili A, Amelon R, Lu J (2011b) Planar radial extension for constitutive modeling of anisotropic biological soft tissues. Int J Struct Changes Sol 3(2): 23–31Google Scholar
  39. Rausch SMK, Martin C, Bornemann PB, Uhlig S, Wall WA (2011) Material model of lung parenchyma based on living precision-cut lung slice testing. J Mech Behav Biomed Mater 4(4): 583–592CrossRefGoogle Scholar
  40. Reeps C, Essler M, Pelisek J, Seidl S, Eckstein HH, Krause BJ (2008) Increased 18F-fluorodeoxyglucose uptake in abdominal aortic aneurysms in positron emission/computed tomography is associated with inflammation, aortic wall instability, and acute symptoms. J Vasc Surg 48(2): 417–423CrossRefGoogle Scholar
  41. Reeps C, Gee MW, Maier A, Pelisek J, Gurdan M, Wall WA, Mariss J, Eckstein HH, Essler M (2009) Glucose metabolism in the vessel wall correlates with mechanical instability and inflammatory changes in a patient with a growing aneurysm of the abdominal aorta. Circ Cardiovasc Imaging 2(6): 507–509CrossRefGoogle Scholar
  42. Reeps C, Gee M, Maier A, Gurdan M, Eckstein HH, Wall WA (2010) The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. J Vasc Surg 51(3): 679–688CrossRefGoogle Scholar
  43. Royston P, Ambler G, Sauerbrei W (1999) The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol 28(5): 964–974CrossRefGoogle Scholar
  44. Sakalihasan N, Hustinx R, Limet R (2004) Contribution of PET scanning to the evaluation of abdominal aortic aneurysm. Sem Vasc Surg 17(2): 144–153CrossRefGoogle Scholar
  45. Sauerbrei W, Meier-Hirmer C, Benner A, Royston P (2006) Multivariable regression model building by using fractional polynomials: description of SAS, STATA and R programs. Comput Stat Data Anal 50(12): 3464–3485MathSciNetzbMATHCrossRefGoogle Scholar
  46. The UK Small Aneurysm Trial Participants with Brown LC and Powell JT (1999) Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. Ann Surg 230(3):289–297 (2006)Google Scholar
  47. Thubrikar MJ, Labrosse F, Robicsek J, Al-Soudi B, Fowler M (2001) Mechanical properties of abdominal aortic aneurysm wall. J Med Eng Technol 25(4): 133–142CrossRefGoogle Scholar
  48. Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, McAlister F, Garg AX (2006) Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 17(7): 2034–2047CrossRefGoogle Scholar
  49. Truijers M, Kurvers HAJM, Bredie SJH, Oyen WJG, Blankensteijn JD (2008) In vivo imaging of abdominal aortic aneurysms: increased FDG uptake suggests inflammation in the aneurysm wall. J Endovasc Ther 15(4): 462–467CrossRefGoogle Scholar
  50. Vallabhaneni S, Gilling-Smith G, How T, Carter S, Brennan J, Harris P (2004) Heterogeneity of tensile strength and matrix metalloproteinase activity in the wall of abdominal aortic aneurysms. J Endovasc Ther 11: 494–502CrossRefGoogle Scholar
  51. Vande Geest JP, Sacks MS, Vorp DA (2006) The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech 39(7): 1324–1334CrossRefGoogle Scholar
  52. Vande Geest JP, Wang DHJ, Wisniewski S, Makaroun M, Vorp D (2006) Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann Biomed Eng 34(7): 1098–1106CrossRefGoogle Scholar
  53. Wall WA, Gee MW (2010) Baci: a parallel multiphysics simulation environment. Technical report, Institute for Computational Mechanics, Technische Universität MünchenGoogle Scholar
  54. Watton P, Hill N (2009) Evolving mechanical properties of a model of abdominal aortic aneurysm. Biomech Model Mechanobiol 8(1): 25–42CrossRefGoogle Scholar
  55. Xenos M, Rambhia S, Alemu Y, Einav S, Labropoulos N, Tassiopoulos A, Ricotta J, Bluestein D (2010) Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann Biomed Eng 38(11): 3323–3337CrossRefGoogle Scholar
  56. Zeinali-Davarani S, Raguin L, Vorp DA, Baek S (2011) Identification of in vivo material and geometric parameters of a human aorta: toward patient-specific modeling of abdominal aortic aneurysm. Biomech Model Mechanobiol 10(5): 689–699CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • C. Reeps
    • 1
  • A. Maier
    • 2
  • J. Pelisek
    • 1
  • F. Härtl
    • 1
  • V. Grabher-Meier
    • 1
  • W. A. Wall
    • 2
  • M. Essler
    • 3
  • H.-H. Eckstein
    • 1
  • M. W. Gee
    • 4
    Email author
  1. 1.Clinic for Vascular and Endovascular Surgery, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  2. 2.Institute for Computational MechanicsTechnische Universität MünchenGarching bei MünchenGermany
  3. 3.Clinic for Nuclear Medicine, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  4. 4.Mechanics and High Performance Computing GroupTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations