Biomechanics and Modeling in Mechanobiology

, Volume 12, Issue 3, pp 597–615 | Cite as

Microdomain evolution on giant unilamellar vesicles

Original Paper


A chemo-mechanical model is used to capture the formation and evolution of microdomains on the deforming surface of giant unilamellar vesicles. The model is intended for the regime of vesicle dynamics characterized by a distinct difference in time scales between shape change and species transport. This is achieved by ensuring that shape equilibrium holds away from chemical equilibrium. Conventional descriptions are used to define the curvature and chemical contributions to the vesicle energetics. Both contributions are consistently non-dimensionalized. The phase-field framework is used to cast the coupled model in a diffuse-interface form. The resulting fourth-order nonlinear system of equations is discretized using the finite- element method with a uniform cubic spline basis, which satisfies global higher-order continuity. Two-dimensional and axisymmetric numerical examples of domain evolution coupled to vesicle shape deformation are presented. Curvature-dependent domain sorting and shape deformation dominated by line tension are also considered.


Vesicles Chemo-mechanical model Phase separation Bending elasticity Line energy Phase field Finite-element analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adalsteinsson D, Sethian J (2003) Transport and diffusion of material quantities on propagating interfaces via level set methods. J Comput Phys 185(1): 271–288MathSciNetMATHCrossRefGoogle Scholar
  2. Akira O (1989) Ginzburg–Landau approach to elastic effects in the phase separation of solids. J Phys Soc Jpn 58(9): 3065–3068CrossRefGoogle Scholar
  3. Ayton GS, McWhirter JL, Patrick M, Voth GA (2005) Coupling field theory with continuum mechanics: a simulation of domain formation in giant unilamellar vesicles. Biophys J 88(6): 3855–3869CrossRefGoogle Scholar
  4. Bartkowiak L, Pawlow I (2005) The Cahn–Hilliard–Gurtin system coupled with elasticity. Control Cybern 34(4): 1005–1043MathSciNetMATHGoogle Scholar
  5. Baumgart T, Das S, Webb W, Jenkins J (2005) Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys J 89(2): 1067–1080CrossRefGoogle Scholar
  6. Bertalmio M, Cheng LT, Osher S, Sapiro G (2001) Variational problems and partial differential equations on implicit surfaces. J Comput Phys 174(2): 759–780MathSciNetMATHCrossRefGoogle Scholar
  7. Biben T, Kassner K, Misbah C (2005) Phase-field approach to three-dimensional vesicle dynamics. Phys Rev E 72: 041921CrossRefGoogle Scholar
  8. Brooks AN, Hughes TJ (1982) Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations. Comput Method Appl M 32(1-3): 199–259MathSciNetMATHCrossRefGoogle Scholar
  9. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28(2): 258–267CrossRefGoogle Scholar
  10. Campelo F, Hernández-Machado A (2006) Dynamic model and stationary shapes of fluid vesicles. Eur Phys J E 20(1): 37–45CrossRefGoogle Scholar
  11. Canham P (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26(1): 61–81CrossRefGoogle Scholar
  12. Deseri L, Piccioni MD, Zurlo G (2008) Derivation of a new free energy for biological membranes. Continuum Mech Therm 20(5): 255–273MathSciNetMATHCrossRefGoogle Scholar
  13. Elson EL, Fried E, Dolbow JE, Genin GM (2010) Phase separation in biological membranes: integration of theory and experiment. Annu Rev Biophys 39: 207–226CrossRefGoogle Scholar
  14. Evans E (1974) Bending resistance and chemically induced moments in membrane bilayers. Biophys J 14(12): 923–931CrossRefGoogle Scholar
  15. Evans E, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC Press, Boca RatonGoogle Scholar
  16. Eyre DJ (1997) An unconditionally stable one-step scheme for gradient systems. Unpublished articleGoogle Scholar
  17. Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10(1): 51–61CrossRefGoogle Scholar
  18. Fried E (2006) On the relationship between supplemental balances in two theories for pure interface motion. SIAM J Appl Math 66(4): 1130–1149MathSciNetMATHCrossRefGoogle Scholar
  19. Fried E, Gurtin ME (1996) A phase-field theory for solidification based on a general anisotropic sharp-interface theory with interfacial energy and entropy. Physica D 91(1–2): 143–181MathSciNetMATHCrossRefGoogle Scholar
  20. Garcke H (2003) On Cahn–Hilliard systems with elasticity. Proc R Soc Edinb A 133(02): 307–331MathSciNetMATHCrossRefGoogle Scholar
  21. Gonzalez-Cinca R, Folch R, Benitez R, Ramirez-Piscina L, Casademunt J, Hernandez-Machado A (2003) Phase-field models in interfacial pattern formation out of equilibrium. ArXiv Condensed Matter e-printsGoogle Scholar
  22. Greer JB (2006) An improvement of a recent eulerian method for solving PDEs on general geometries. J Sci Comput 29: 321–352MathSciNetMATHCrossRefGoogle Scholar
  23. Greer JB, Bertozzi AL, Sapiro G (2006) Fourth order partial differential equations on general geometries. J Comput Phys 216(1): 216–246MathSciNetMATHCrossRefGoogle Scholar
  24. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C 28(11): 693–703Google Scholar
  25. Hess ST, Kumar M, Verma A, Farrington J, Kenworthy A, Zimmerberg J (2005) Quantitative electron microscopy and fluorescence spectroscopy of the membrane distribution of influenza hemagglutinin. J Cell Biol 169(6): 965–976CrossRefGoogle Scholar
  26. Huggins ML (1942) Theory of solutions of high polymers. J Am Chem Soc 64(7): 1712–1719CrossRefGoogle Scholar
  27. Jamet D, Misbah C (2007) Towards a thermodynamically consistent picture of the phase-field model of vesicles: Local membrane incompressibility. Phys Rev E 76(5): 051907CrossRefGoogle Scholar
  28. Jülicher F, Lipowsky R (1996) Shape transformations of vesicles with intramembrane domains. Phys Rev E 53(3): 2670–2683CrossRefGoogle Scholar
  29. Komura S, Shirotori H, Olmsted P, Andelman D (2004) Lateral phase separation in mixtures of lipids and cholesterol. Europhys Lett 67(2): 321–327CrossRefGoogle Scholar
  30. Lowengrub JS, Rätz A, Voigt A (2009) Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys Rev E 79(3): 031926CrossRefGoogle Scholar
  31. Murray J (2002) Mathematical biology. Interdisciplinary applied mathematics. Springer, BerlinGoogle Scholar
  32. Ono A, Freed EO (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci USA 98(24): 13925–13930CrossRefGoogle Scholar
  33. Piegl L, Tiller W (1997) The NURBS book, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  34. Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47(7): 1597–1598CrossRefGoogle Scholar
  35. Sagui C, Somoza AM, Desai RC (1994) Spinodal decomposition in an order-disorder phase transition with elastic fields. Phys Rev E 50: 4865–4879CrossRefGoogle Scholar
  36. Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46(1): 13–137CrossRefGoogle Scholar
  37. Seifert U, Berndl K, Lipowsky R (1991) Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. Phys Rev A 44(2): 1182–1202CrossRefGoogle Scholar
  38. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633): 569–572CrossRefGoogle Scholar
  39. Smereka P (2006) The numerical approximation of a delta function with application to level set methods. J Comput Phys 211(1): 77–90MathSciNetMATHCrossRefGoogle Scholar
  40. Suo Z, Lu W (2000) Composition modulation and nanophase separation in a binary epilayer. J Mech Phys Solids 48(2): 211–232MATHCrossRefGoogle Scholar
  41. Takeda M, Leser GP, Russell CJ, Lamb RA (2003) Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc Natl Acad Sci USA 100(25): 14610–14617CrossRefGoogle Scholar
  42. Tsafrir I, Caspi Y, Guedeau-Boudeville MA, Arzi T, Stavans J (2003) Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys Rev Lett 91: 138102CrossRefGoogle Scholar
  43. Wang X, Du Q (2008) Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J Math Biol 56(3): 347–371MathSciNetMATHCrossRefGoogle Scholar
  44. Yanagisawa M, Imai M, Masui T, Komura S, Ohta T (2007) Growth dynamics of domains in ternary fluid vesicles. Biophys J 92(1): 115–125CrossRefGoogle Scholar
  45. Yeon DH, Cha PR, Kim JH, Grant M, Yoon JK (2005) A phase field model for phase transformation in an elastically stressed binary alloy. Model Simul Mater Sci Eng 13(3): 299–319CrossRefGoogle Scholar
  46. Zurlo G (2008) Material and geometric phase transitions in biological membranes. PhD thesis, Università à di PisaGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Civil EngineeringDuke UniversityDurhamUSA
  2. 2.Department of Mechanical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations