Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 12, Issue 3, pp 475–496 | Cite as

Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data

  • P. Moireau
  • C. Bertoglio
  • N. Xiao
  • C. A. Figueroa
  • C. A. Taylor
  • D. Chapelle
  • J.-F. Gerbeau
Original Paper

Abstract

Viscoelastic support has been previously established as a valuable modeling ingredient to represent the effect of surrounding tissues and organs in a fluid-structure vascular model. In this paper, we propose a complete methodological chain for the identification of the corresponding boundary support parameters, using patient image data. We consider distance maps of model to image contours as the discrepancy driving the data assimilation approach, which then relies on a combination of (1) state estimation based on the so-called SDF filtering method, designed within the realm of Luenberger observers and well adapted to handling measurements provided by image sequences, and (2) parameter estimation based on a reduced-order UKF filtering method which has no need for tangent operator computations and features natural parallelism to a high degree. Implementation issues are discussed, and we show that the resulting computational effectiveness of the complete estimation chain is comparable to that of a direct simulation. Furthermore, we demonstrate the use of this framework in a realistic application case involving hemodynamics in the thoracic aorta. The estimation of the boundary support parameters proves successful, in particular in that direct modeling simulations based on the estimated parameters are more accurate than with a previous manual expert calibration. This paves the way for complete patient-specific fluid-structure vascular modeling in which all types of available measurements could be used to estimate additional uncertain parameters of biophysical and clinical relevance.

Keywords

Nonlinear fluid-structure interaction Patient-specific hemodynamics Image-based data assimilation Parameter identification Support boundary conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alastrué V, Garcia A, Peña E, Rodríguez JF, Martínez M, Doblaré M (2010) Numerical framework for patient-specific computational modelling of vascular tissue. Int J Numer Meth Biomed Eng 26(1): 35–51zbMATHCrossRefGoogle Scholar
  2. Auroux D, Blum J (2008) A nudging-based data assimilation method the back and forth nudging (BFN) algorithm. Nonlinear Process Geophys 15: 305–319CrossRefGoogle Scholar
  3. Baerentzen J, Aanaes H (2005) Signed distance computation using the angle weighted pseudo-normal. IEEE Trans Vis Comput Graph 11(3): 243–253CrossRefGoogle Scholar
  4. Bellman RE. (1957) Dynamic programming. Princeton University Press, NJzbMATHGoogle Scholar
  5. Bertoglio C, Chapelle D, Fernández MA, Gerbeau J-F, Moireau P (2012a) State observers of a vascular fluid-structure interaction model through measurements in the solid (submitted to CMAME)Google Scholar
  6. Bertoglio C, Moireau P, Gerbeau J-F (2012) Sequential parameter estimation for fluid-structure problems. application to hemodynamics. Int J Numer Meth Biomed Eng 28(4): 434–455. doi: 10.1002/cnm.1476 MathSciNetCrossRefGoogle Scholar
  7. Blum J, Le Dimet F-X, Navon IM (2009) Data assimilation for geophysical fluids. Comput Methods Atmos Oceans 14: 385–441MathSciNetGoogle Scholar
  8. Brown AG, Shi Y, Arndt A, Müller J, Lawford P, Hose DR (2011) Importance of realistic LVAD profiles for assisted aortic simulations evaluation of optimal outflow anastomosis locationsGoogle Scholar
  9. Buerger C, Schaeffter T, King AP (2011) Hierarchical adaptive local affine registration for fast and robust respiratory motion estimation. Med Image Anal 15(4): 551–564CrossRefGoogle Scholar
  10. Caselles V, Kimmel R, Shaspiro G (1997) Geodesic active contours. Int J Comput Vis 22(1): 61–79zbMATHCrossRefGoogle Scholar
  11. Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AM (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics technique and sensitivity. IEEE Trans Med Imaging 24(4): 457–467CrossRefGoogle Scholar
  12. Chabiniok R, Moireau P, Lesault P-F, Rahmouni A, Deux J-F, Chapelle D (2011) Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech Model Mechanobiol 11(5): 609–630. doi: 10.1007/s10237-011-0337-8 CrossRefGoogle Scholar
  13. Chapelle D, Cîndea N, Moireau P (2012) Improving convergence in numerical analysis using observers the wave-like equation case. M3AS doi: 10.1142/s0218202512500467
  14. Chavent G (2010) Nonlinear least squares for inverse problems. Springer, BerlinCrossRefGoogle Scholar
  15. Fernández MA, Gerbeau J-F, Grandmont C (2007) A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Intern J Numer Methods Eng 69(4): 794–821zbMATHCrossRefGoogle Scholar
  16. Fernández MA, Gerbeau J-F (2009) Fluid structure interaction problems in haemodynamics. In: Formaggia L., Quarteroni A., Veneziani A. (eds) Mathematical modelling of the cardiovascular system, Chap 9. Springer, BerlinGoogle Scholar
  17. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes JR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195(41-43): 5685–5706MathSciNetzbMATHCrossRefGoogle Scholar
  18. Formaggia L, Gerbeau J-F, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191(6-7): 561–582MathSciNetzbMATHCrossRefGoogle Scholar
  19. Gee MW, Förster C, Wall WA (2010) A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Methods Biomed Eng 26(1): 52–72zbMATHCrossRefGoogle Scholar
  20. Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput Struct 83(2-3): 155–165CrossRefGoogle Scholar
  21. Julier S, Uhlmann J (2002) Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations. In: Proceedings of IEEE American control conference, pp 887–892Google Scholar
  22. Kailath T, Sayed AH, Hassibi B (2000) Linear estimation. Prentice-Hall, Englewood CliffsGoogle Scholar
  23. Kerckhoffs RCP, Neal ML, Gu Q, Bassingthwaighte JB, Omens JM, Mcculloch AD (2007) Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng 35(1): 1–18CrossRefGoogle Scholar
  24. Luenberger DG (1971) An introduction to observers. IEEE Trans Autom Control 16: 596–602CrossRefGoogle Scholar
  25. Martin V, Clément F, Decoene A, Gerbeau J-F (2005) Parameter identification for a one-dimensional blood flow model. ESAIM-Proc 14: 174–200. doi: 10.1051/proc:2005014 zbMATHGoogle Scholar
  26. Moireau P, Chapelle D (2011a) Erratum of article, Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. COCV 17:406–409. doi: 10.1051/cocv/2011001 Google Scholar
  27. Moireau P, Chapelle D (2011) Reduced-order Unscented Kalman filtering with application to parameter identification in large-dimensional systems. Control Optim Calc Var 17: 380–405. doi: 10.1051/cocv/2010006 MathSciNetzbMATHCrossRefGoogle Scholar
  28. Moireau P, Chapelle D, Le Tallec P (2008) Joint state and parameter estimation for distributed mechanical systems. Comput Methods Appl Mech Eng 197: 659–677MathSciNetzbMATHCrossRefGoogle Scholar
  29. Moireau P, Chapelle D, Le Tallec P (2009) Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging. Inverse Problems 25(3):035,010 (25 pp)Google Scholar
  30. Moireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau J-F (2011) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol 11(1): 1–18. doi: 10.1007/s10237-011-0289-z Google Scholar
  31. Moreno R, Nicoud F, Veunac L, Rousseau H (2006) Non-linear-transformation-field to build moving meshes for patient specific blood flow simulations. In: Wesseling P, Oñate E, Périaux J (ed) ECCOMAS CFDGoogle Scholar
  32. Navon IM (2009) Data assimilation for numerical weather prediction: a review. In: Park SK, Xu L (eds) Data assimilation for atmospheric, oceanic, hydrologic applications. Springer, BerlinGoogle Scholar
  33. Perego M, Veneziani A, Vergara C (2011) A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM J Sci Comp 33(3): 1181–1211MathSciNetzbMATHCrossRefGoogle Scholar
  34. Peyré G, Cohen LD (2008) Heuristically driven front propagation for fast geodesic extraction. Int J Comput Vis Biomech 1(1): 55–67Google Scholar
  35. Pham DT (2001) Stochastic methods for sequential data assimilation in strongly nonlinear systems. Monthly Weather Rev 129(5): 1194–1207MathSciNetCrossRefGoogle Scholar
  36. Pham DT, Verron J, Gourdeau L (1998) Filtres de Kalman singuliers évolutifs pour l’assimilation de données en océanographie. Singular evolutive Kaiman filters for data assimilation in oceanography. Comptes Rendus de I’Académie des Sciences-Series IIA 326(4): 255–260. doi: 10.1016/S1251-8050(97)86815-2 Google Scholar
  37. Piccinelli M, Mirabella L, Passerini T, Haber E, Veneziani A (2010) 4D image-based CFD simulation of a compliant blood vessel. Technical Report TR-2010-027, Emory UniversityGoogle Scholar
  38. Quarteroni A, Ragni S, Veneziani A (2001) Coupling between lumped and distributed models for blood flow problems. Comput Vis Sci, Second AMIF international conference (Il Ciocco, 2000), vol 4, no 2, pp 111–124Google Scholar
  39. Simon D (2006) Optimal state estimation: Kalman H and nonlinear approaches. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  40. Troianowski G, Taylor CA, Feinstein JA, Vignon-Clementel IE (2011) Three-dimensional simulations in Glenn patients clinically based boundary conditions. Hemodynamic results and sensitivity to input data. J Biomech Eng 133: 111,006CrossRefGoogle Scholar
  41. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2010) Outflow boundary conditions for 3 simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed EngGoogle Scholar
  42. Xi J, Lamata P, Lee J, Moireau P, Chapelle D, Smith N (2011) Myocardial transversely isotropic material parameter estimation from in-silico measurements based on reduced-order Unscented Kalman filter. J Mech Behav Biomed Mater 4: 1090–1102. doi: 10.1016/j.jmbbm.2011.03.018 CrossRefGoogle Scholar
  43. Xiong G, Figueroa CA, Xiao N, Taylor CA (2010) Simulation of blood flow in deformable vessels using subject-specific geometry and assigned variable mechanical wall properties. Int J Numer Methods Biomed Eng 27(7): 1000–1016MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • P. Moireau
    • 1
  • C. Bertoglio
    • 1
  • N. Xiao
    • 2
    • 3
  • C. A. Figueroa
    • 2
  • C. A. Taylor
    • 3
  • D. Chapelle
    • 1
  • J.-F. Gerbeau
    • 1
  1. 1.InriaLe ChesnayFrance
  2. 2.Department of Biomedical EngineeringKing’s College LondonLondonUK
  3. 3.Department of BioengineeringStanford UniversityStanfordUSA

Personalised recommendations