Biomechanics and Modeling in Mechanobiology

, Volume 12, Issue 3, pp 417–429 | Cite as

The effect of collagen degradation on chondrocyte volume and morphology in bovine articular cartilage following a hypotonic challenge

  • S. M. Turunen
  • M. J. Lammi
  • S. Saarakkala
  • S.-K. Han
  • W. Herzog
  • P. Tanska
  • R. K. Korhonen
Original Paper


Collagen degradation is one of the early signs of osteoarthritis. It is not known how collagen degradation affects chondrocyte volume and morphology. Thus, the aim of this study was to investigate the effect of enzymatically induced collagen degradation on cell volume and shape changes in articular cartilage after a hypotonic challenge. Confocal laser scanning microscopy was used for imaging superficial zone chondrocytes in intact and degraded cartilage exposed to a hypotonic challenge. Fourier transform infrared microspectroscopy, polarized light microscopy, and mechanical testing were used to quantify differences in proteoglycan and collagen content, collagen orientation, and biomechanical properties, respectively, between the intact and degraded cartilage. Collagen content decreased and collagen orientation angle increased significantly (p < 0.05) in the superficial zone cartilage after collagenase treatment, and the instantaneous modulus of the samples was reduced significantly (p < 0.05). Normalized cell volume and height 20 min after the osmotic challenge (with respect to the original volume and height) were significantly (p < 0.001 and p < 0.01, respectively) larger in the intact compared to the degraded cartilage. These findings suggest that the mechanical environment of chondrocytes, specifically collagen content and orientation, affects cell volume and shape changes in the superficial zone articular cartilage when exposed to osmotic loading. This emphasizes the role of collagen in modulating cartilage mechanobiology in diseased tissue.


Articular cartilage Mechanobiology Microscopy Enzymatic treatment Collagen Chondrocytes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexopoulos LG, Setton LA, Guilak F (2005) The biomechanical role of the chondrocyte pericellular matrix in articular cartilage. Acta Biomater 1: 317–325CrossRefGoogle Scholar
  2. Alyassin AM, Lancaster JL, Downs JH III, Fox PT (1994) Evaluation of new algorithms for the interactive measurement of surface area and volume. Med Phys 21: 741–752CrossRefGoogle Scholar
  3. Arokoski JPA, Hyttinen MM, Lapveteläinen T, Takacs P, Kosztaczky B, Modis L, Kovanen V, Helminen HJ (1996) Decreased birefringence of the superficial zone collagen network in the canine knee (stifle) articular cartilage after long distance running training, detected by quantitative polarised light microscopy. Ann Rheum Dis 55: 253–264CrossRefGoogle Scholar
  4. Arokoski JPA, Jurvelin JS, Väätäinen U, Helminen HJ (2000) Normal and pathological adaptations of articular cartilage to joint loading. Scand J Med Sci Sports 10: 186–198CrossRefGoogle Scholar
  5. Bader DL, Kempson GE, Barrett AJ, Webb W (1981) The effects of leucocyte elastase on the mechanical properties of adult human articular cartilage in tension. Biochim Biophys Acta 677: 103–108CrossRefGoogle Scholar
  6. Bennett HS (1950) Methods applicable to the study of both fresh and fixed materials. Themicroscopical investigation of biological materials with polarized light. In: McClung JR (ed.) McClung’s handbook of microscopical technique. Paul B Hoeber, New York, pp 591–677Google Scholar
  7. Bi X, Yang X, Bostrom MP, Camacho NP (2006) Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage. Biochim Biophys Acta 1758: 934–941CrossRefGoogle Scholar
  8. Boskey A, Camacho NP (2007) FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28: 2465–2478CrossRefGoogle Scholar
  9. Brown H, Prescott R (2006) Applied mixed models in medicine. Wiley, New YorkzbMATHCrossRefGoogle Scholar
  10. Buschmann MD, Hunziker EB, Kim Y-J, Grodzinsky AJ (1996) Altered aggregan synthesis correlates with cell and nucleus structure in statically compressed cartilage. J Cell Sci 109: 499–508Google Scholar
  11. Bush PG, Hall AC (2001a) Regulatory volume decrease (RVD) by isolated and in situ bovine articular chondrocytes. J Cell Physiol 187: 304–314CrossRefGoogle Scholar
  12. Bush PG, Hall AC (2001b) The osmotic sensitivity of isolated and in situ bovine articular chondrocytes. J Orthop Res 19: 768–778CrossRefGoogle Scholar
  13. Bush PG, Hall AC (2003) The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage. Osteoarthr Cartil 11: 242–251CrossRefGoogle Scholar
  14. Bush PG, Hall AC (2005) Passive osmotic properties of in situ human articular chondrocytes within non-degenerate and degenerate cartilage. J Cell Physiol 204: 309–319CrossRefGoogle Scholar
  15. Camacho NP, West P, Torzilli PA, Mendelsohn R (2001) FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers 62: 1–8CrossRefGoogle Scholar
  16. Changoor A, Fereydoonzad L, Yaroshinsky A, Buschmann MD (2010) Effects of refrigeration and freezing on the electromechanical and biomechanical properties of articular cartilage. J Biomech Eng 132: 064502CrossRefGoogle Scholar
  17. Flahiff C, Narmoneva D, Huebner J, Kraus V, Guilak F, Setton L (2002) Osmotic loading to determine the intrinsic material properties of guinea pig knee cartilage. J Biomech 35: 1285–1290CrossRefGoogle Scholar
  18. Grushko G, Schneiderman R, Maroudas A (1989) Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: a comparison between the processes of ageing and degeneration in human hip cartilage. Connect Tissue Res 19: 149–176CrossRefGoogle Scholar
  19. Guilak F (2011) Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol 25: 815–823CrossRefGoogle Scholar
  20. Guilak F, Alexopoulos LG, Upton ML, Youn I, Choi JB, Cao LI, Setton LA, Haider MA (2006) The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann NY Acad Sci 1068: 498–512CrossRefGoogle Scholar
  21. Han SK, Colarusso P, Herzog W (2009) Confocal microscopy indentation system for studying in situ chondrocyte mechanics. Med Eng Phys 31: 1038–1042CrossRefGoogle Scholar
  22. Han SK, Seerattan R, Herzog W (2010) Mechanical loading of in situ chondrocytes in lapine retropatellar cartilage after anterior cruciate ligament transection. J R Soc Interface 7: 895–903CrossRefGoogle Scholar
  23. Hing WA, Sherwin AF, Ross JM, Poole CA (2002) The influence of the pericellular microenvironment on the chondrocyte response to osmotic challenge. Osteoarthr Cartil 10: 297–307CrossRefGoogle Scholar
  24. Julkunen P, Kiviranta P, Wilson W, Jurvelin JS, Korhonen RK (2007) Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. J Biomech 40: 1862–1870CrossRefGoogle Scholar
  25. Jurvelin JS, Buschmann MD, Hunziker EB (1997) Optical and mechanical determination of Poisson’s ratio of adult bovine humeral articular cartilage. J Biomech 30: 235–241CrossRefGoogle Scholar
  26. Kikuchi T, Sakuta T, Yamaguchi T (1998) Intra-articular injection of collagenase induces experimental osteoarthritis in mature rabbits. Osteoarthr Cartil 6: 177–186CrossRefGoogle Scholar
  27. Kiraly K, Hyttinen MM, Lapveteläinen T, Elo M, Kiviranta I, Dobai J, Modis L, Helminen HJ, Arokoski JP (1997) Specimen preparation and quantification of collagen birefringence in unstained sections of articular cartilage using image analysis and polarizing light microscopy. Histochem J 29: 317–327CrossRefGoogle Scholar
  28. Korhonen RK, Han SK, Herzog W (2010a) Osmotic loading of articular cartilage modulates cell deformations along primary collagen fibril directions. J Biomech 43: 783–787CrossRefGoogle Scholar
  29. Korhonen RK, Han SK, Herzog W (2010b) Osmotic loading of in situ chondrocytes in their native environment. Mol Cell Biomech 7: 125–134Google Scholar
  30. Korhonen RK, Julkunen P, Jurvelin JS, Saarakkala S (2011) Structural and compositional changes in peri- and extracellular matrix of osteoarthritic cartilage modulate chondrocyte morphology. Cell Mol Bioeng 4: 484–494CrossRefGoogle Scholar
  31. Korhonen RK, Julkunen P, Wilson W, Herzog W (2008) Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes. J Biomech Eng 130: 021003CrossRefGoogle Scholar
  32. Korhonen RK, Jurvelin JS (2010) Compressive and tensile properties of articular cartilage in axial loading are modulated differently by osmotic environment. Med Eng Phys 32: 155–160CrossRefGoogle Scholar
  33. Korhonen RK, Laasanen MS, Töyräs J, Lappalainen R, Helminen HJ, Jurvelin JS (2003) Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J Biomech 36: 1373–1379CrossRefGoogle Scholar
  34. Korhonen RK, Wong M, Arokoski J, Lindgren R, Helminen HJ, Hunziker EB, Jurvelin JS (2002) Importance of the superficial tissue layer for the indentation stiffness of articular cartilage. Med Eng Phys 24: 99–108CrossRefGoogle Scholar
  35. Laasanen MS, Töyräs J, Korhonen RK, Rieppo J, Saarakkala S, Nieminen MT, Hirvonen J, Jurvelin JS (2003) Biomechanical properties of knee articular cartilage. Biorheology 40: 133–140Google Scholar
  36. Langelier E, Buschmann MD (2003) Increasing strain and strain rate strengthen transient stiffness but weaken the response to subsequent compression for articular cartilage in unconfined compression. J Biomech 36: 853–859CrossRefGoogle Scholar
  37. Laouar L, Fishbein K, McGann LE, Horton WE, Spencer RG, Jomha NM (2007) Cryopreservation of porcine articular cartilage: MRI and biochemical results after different freezing protocols. Cryobiology 54: 36–43CrossRefGoogle Scholar
  38. Långsjö TK, Rieppo J, Pelttari A, Oksala N, Kovanen V, Helminen HJ (2002) Collagenase-induced changes in articular cartilage as detected by electron-microscopic stereology, quantitative polarized light microscopy and biochemical assays. Cells Tissues Organs 172: 265–275CrossRefGoogle Scholar
  39. Li LP, Soulhat J, Buschmann MD, Shirazi-Adl A (1999) Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin Biomech 14: 673–682CrossRefGoogle Scholar
  40. Loeser RF (2000) Chondrocyte integrin expression and function. Biorheology 37: 109–116Google Scholar
  41. Lyyra T, Arokoski JPA, Oksala N, Vihko A, Hyttinen M, Jurvelin JS, Kiviranta I (1999) Experimental validation of arthroscopic cartilage stiffness measurement using enzymatically degraded cartilage samples. Phys Med Biol 44: 525–535CrossRefGoogle Scholar
  42. Mankin HJ, Mow VC, Buckwalter JA, Iannotti JP, Ratcliffe A (1994) Form and function of articular cartilage. In: Sheldon RS (ed.) Orthopaedic basic science. American Academy of Orthopaedic Surgeons, USA, pp 1–44Google Scholar
  43. Maroudas A, Venn M (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling. Ann Rheum Dis 36: 399–406CrossRefGoogle Scholar
  44. Millward-Sadler SJ, Salter DM (2004) Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng 32: 435–446CrossRefGoogle Scholar
  45. Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13: 67–97CrossRefGoogle Scholar
  46. Narmoneva DA, Wang JY, Setton LA (1999) Nonuniform swelling-induced residual strains in articular cartilage. J Biomech 32: 401–408CrossRefGoogle Scholar
  47. Newman P, Watt F (1988) Influence of cytochalasin D-induced changes in cell shape on proteoglycan synthesis by cultured articular chondrocytes. Exp Cell Res 178: 199–210CrossRefGoogle Scholar
  48. Nieminen MT, Töyräs J, Rieppo J, Hakumäki JM, Silvennoinen J, Helminen HJ, Jurvelin JS (2000) Quantitative MR microscopy of enzymatically degraded articular cartilage. Magn Reson Med 43: 676–681CrossRefGoogle Scholar
  49. Poole CA (1997) Articular cartilage chondrons: form, function and failure. J Anat 191: 1–13CrossRefGoogle Scholar
  50. Poole CA, Ayad S, Gilbert RT (1992) Chondrons from articular cartilage. V. Immunohistochemical evaluation of type VI collagen organisation in isolated chondrons by light, confocal and electron microscopy. J Cell Sci 103: 1101–1110Google Scholar
  51. Poole CA, Flint MH, Beaumont BW (1988) Chondrons extracted from canine tibial cartilage: preliminary report on their isolation and structure. J Orthop Res 6: 408–419CrossRefGoogle Scholar
  52. Rieppo J, Hallikainen J, Jurvelin JS, Kiviranta I, Helminen HJ, Hyttinen MM (2008) Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage. Microsc Res Tech 71: 279–287CrossRefGoogle Scholar
  53. Rieppo J, Hyttinen MM, Halmesmäki E, Ruotsalainen H, Vasara A, Kiviranta I, Jurvelin JS, Helminen HJ (2009) Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation. Osteoarthr Cartil 17: 448–455CrossRefGoogle Scholar
  54. Rieppo J, Töyräs J, Nieminen MT, Kovanen V, Hyttinen MM, Korhonen RK, Jurvelin JS, Helminen HJ (2003) Structure-function relationships in enzymatically modified articular cartilage. Cells Tissues Organs 175: 121–132CrossRefGoogle Scholar
  55. Saarakkala S, Julkunen P, Kiviranta P, Mäkitalo J, Jurvelin JS, Korhonen RK (2010) Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthr Cartil 18: 73–81CrossRefGoogle Scholar
  56. Schmidt MB, Mow VC, Chun LE, Eyre DR (1990) Effects of proteoglycan extraction on the tensile behavior of articular cartilage. J Orthop Res 8: 353–363CrossRefGoogle Scholar
  57. Stockwell RA (1991) Cartilage failure in osteoarthritis: relevance of normal structure and function. Rev Clin Anat 4: 161–191CrossRefGoogle Scholar
  58. Stockwell RA, Meachim G (1973) The chondrocytes. In: Freeman MAR (ed.) Adult articular cartilage. Alden Press, Oxford, pp 51– 99Google Scholar
  59. Szarko M, Muldrew K, Bertram JEA (2010) Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage. BMC Musculoskel Disord 11: 231CrossRefGoogle Scholar
  60. Töyräs J, Rieppo J, Nieminen MT, Helminen HJ, Jurvelin JS (1999) Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound. Phys Med Biol 44: 2723–2733CrossRefGoogle Scholar
  61. Turunen SM, Lammi MJ, Saarakkala S, Koistinen A, Korhonen RK (2012) Hypotonic challenge modulates cell volumes differently in the superficial zone of intact articular cartilage and cartilage explant. Biomech Mod Mechanobiol 11: 665–675CrossRefGoogle Scholar
  62. Urban JP, Hall AC, Gehl KA (1993) Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J Cell Physiol 154: 262–270CrossRefGoogle Scholar
  63. Wilson W, Van Donkelaar CC, Van Rietbergen B, Huiskes R (2005) A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J Biomech 38: 1195–1204CrossRefGoogle Scholar
  64. Zheng S, Xia Y, Bidthanapally A, Badar F, Ilsar I, Duvoisin N (2009) Damages to the extracellular matrix in articular cartilage due to cryopreservation by microscopic magnetic resonance imaging and biochemistry. Magn Reson Imaging 27: 648–655CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • S. M. Turunen
    • 1
  • M. J. Lammi
    • 2
    • 3
  • S. Saarakkala
    • 1
    • 4
  • S.-K. Han
    • 5
    • 6
    • 7
  • W. Herzog
    • 5
    • 6
  • P. Tanska
    • 1
  • R. K. Korhonen
    • 1
  1. 1.Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
  2. 2.Department of BiomedicineUniversity of Eastern FinlandKuopioFinland
  3. 3.Biocenter KuopioUniversity of Eastern FinlandKuopioFinland
  4. 4.Department of Diagnostic RadiologyUniversity of Oulu and Oulu University HospitalOuluFinland
  5. 5.Human Performance Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryCanada
  6. 6.Mechanical and Manufacturing Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryCanada
  7. 7.Fischell Department of Bioengineering, Clark School of EngineeringUniversity of MarylandMarylandUSA

Personalised recommendations