Biomechanics and Modeling in Mechanobiology

, Volume 12, Issue 2, pp 349–360 | Cite as

Numerical modelling of the angiogenesis process in wound contraction

  • C. Valero
  • E. JavierreEmail author
  • J. M. García-Aznar
  • M. J. Gómez-Benito
Original Paper


Angiogenesis consists of the growth of new blood vessels from the pre-existing vasculature. This phenomenon takes place in several biological processes, including wound healing. In this work, we present a mathematical model of angiogenesis applied to skin wound healing. The developed model includes biological (capillaries and fibroblasts), chemical (oxygen and angiogenic growth factor concentrations) and mechanical factors (cell traction forces and extracellular matrix deformation) that influence the evolution of the healing process. A novelty from previous works, apart from the coupling of angiogenesis and wound contraction, is the more realistic modelling of skin as a hyperelastic material. Large deformations are addressed using an updated Lagrangian approach. The coupled non-linear model is solved with the finite element method, and the process is studied over two wound geometries (circular and elliptical) of the same area. The results indicate that the elliptical wound vascularizes two days earlier than the circular wound but that they experience a similar contraction level, reducing its size by 25 %.


Angiogenesis Wound healing Contraction Finite element method Mechanochemical analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson A, Chaplain M (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis RID A-5355-2010. Bull Math Biol 60: 857–899. doi: 10.1006/bulm.1998.0042 zbMATHCrossRefGoogle Scholar
  2. Carmeliet P, Jain R (2000) Angiogenesis in cancer and other diseases. Nature 407: 249–257. doi: 10.1038/35025220 CrossRefGoogle Scholar
  3. Chaplain M (2000) Mathematical modelling of angiogenesis RID A-5355-2010. J Neurooncol 50: 37–51. doi: 10.1023/A:1006446020377 CrossRefGoogle Scholar
  4. Cheung J, Zhang M, Leung A, Fan Y (2005) Three-dimensional finite element analysis of the foot during standing - a material sensitivity study RID F-8331-2011. J Biomech 38: 1045–1054. doi: 10.1016/j.jbiomech.2004.05.035 CrossRefGoogle Scholar
  5. Delalleau A, Josse G, Lagarde J-, Zahouani H, Bergheau J- (2008) A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo. Skin Res Technol 14: 152–164. doi: 10.1111/j.1600-0846.2007.00269.x CrossRefGoogle Scholar
  6. Flegg JA, McElwain DLS, Byrne HM, Turner IW (2009) A three species model to simulate application of hyperbaric oxygen therapy to chronic wounds. PLoS Comput Biol 5: e1000451. doi: 10.1371/journal.pcbi.1000451 MathSciNetCrossRefGoogle Scholar
  7. Flegg JA, Byrne HM, McElwain LS (2010) Mathematical model of hyperbaric oxygen therapy applied to chronic diabetic wounds. Bull Math Biol 72: 1867–1891. doi: 10.1007/s11538-010-9514-7 MathSciNetzbMATHCrossRefGoogle Scholar
  8. Flynn C, Taberner A, Nielsen P (2011) Modeling the mechanical response of in vivo human skin under a rich set of deformations. Ann Biomed Eng 39: 1935–1946. doi: 10.1007/s10439-011-0292-7 CrossRefGoogle Scholar
  9. Geris L, Schugart R, Van Oosterwyck H (2010) In silico design of treatment strategies in wound healing and bone fracture healing. Philos Trans R Soc A Math Phys Eng Sci 368: 2683–2706. doi: 10.1098/rsta.2010.0056 CrossRefGoogle Scholar
  10. Glazier J, Graner F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47: 2128–2154. doi: 10.1103/PhysRevE.47.2128 CrossRefGoogle Scholar
  11. Gros J, Farinelli W, Sadow P, Anderson R, Bruns R (1995) On the mechanism of skin wound contraction—a granulation-tissue knockout with a normal phenotype. Proc Natl Acad Sci USA 92: 5982–5986. doi: 10.1073/pnas.92.13.5982 CrossRefGoogle Scholar
  12. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453: 314–321. doi: 10.1038/nature07039 CrossRefGoogle Scholar
  13. Hendriks F, Brokken D, van Eemeren J, Oomens C, Baaijens F, Horsten J (2003) A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin Res Technol 9: 274–283. doi: 10.1034/j.1600-0846.2003.00019.x CrossRefGoogle Scholar
  14. Hibbit D, Karlson B, Sorensen P (2011) Theory manual, version 6.9. HKS inc. PawtucketGoogle Scholar
  15. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester, pp 295–304zbMATHGoogle Scholar
  16. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice Hall International, Englewood CliffszbMATHGoogle Scholar
  17. Javierre E, Vermolen FJ, Vuik C, van der Zwaag S (2008) Numerical modelling of epidermal wound healing. Springer, Berlin; Heidelberger Platz 3, D-14197 Berlin, GermanyGoogle Scholar
  18. Javierre E, Moreo P, Doblaré M, García-Aznar JM (2009) Numerical modeling of a mechano-chemical theory for wound contraction analysis RID F-8256-2010. Int J Solids Struct 46: 3597–3606. doi: 10.1016/j.ijsolstr.2009.06.010 zbMATHCrossRefGoogle Scholar
  19. Lapeer RJ, Gasson PD, Karri V (2011) A hyperelastic finite-element model of human skin for interactive real-time surgical simulation. IEEE Trans Biomed Eng 58: 1013–1022. doi: 10.1109/TBME.2009.2038364 CrossRefGoogle Scholar
  20. Linder-Ganz E, Shabshin N, Itzchak Y, Yizhar Z, Siev-Ner I, Gefen A (2008) Strains and stresses in sub-dermal tissues of the buttocks are greater in paraplegics than in healthy during sitting. J Biomech 41: 567–580. doi: 10.1016/j.jbiomech.2007.10.011 CrossRefGoogle Scholar
  21. Maggelakis S (2003) A mathematical model of tissue replacement during epidermal wound healing. Appl Math Model 27: 189–196. doi: 10.1016/S0307-904X(02)00100-2 zbMATHCrossRefGoogle Scholar
  22. Manoussaki D (2003) A mechanochemical model of angiogenesis and vasculogenesis. ESAIM-Math Model Numer Anal Model Math Anal Numer 37: 581–599. doi: 10.1051/m2an:2003046 MathSciNetzbMATHCrossRefGoogle Scholar
  23. Mantzaris N, Webb S, Othmer H (2004) Mathematical modeling of tumor-induced angiogenesis. J Math Biol 49: 111–187. doi: 10.1007/s00285-003-0262-2 MathSciNetzbMATHCrossRefGoogle Scholar
  24. McGrath M, Simon R (1983) Wound geometry and the kinetics of wound contraction. Plast Reconstr Surg 72: 66–72CrossRefGoogle Scholar
  25. Moreo P, Garcia-Aznar JM, Doblare M (2008) Modeling mechanosensing and its effect on the migration and proliferation of adherent cells RID F-8256-2010. Acta Biomater 4: 613–621. doi: 10.1016/j.actbio.2007.10.014 CrossRefGoogle Scholar
  26. Murphy K, Hall C, Maini P, McCue S, McElwain D (2012) A fibrocontractive mechanochemical model of dermal wound closure incorporating realistic growth factor kinetics. Bull Math Biol 74(5): 1–28. doi: 10.1007/s11538-011-9712-y MathSciNetCrossRefGoogle Scholar
  27. Murray J, Cook J, Tyson R, Lubkin S (1998) Spatial pattern formation in biology: I. Dermal wound healing. II. Bacterial patterns RID F-8802-2011. J Frankl Inst Eng Appl Math 335: 303–332. doi: 10.1016/S0016 MathSciNetCrossRefGoogle Scholar
  28. Olsen L, Sherratt J, Maini P (1995) A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile. J Theor Biol 177: 113–128. doi: 10.1006/jtbi.1995.0230 CrossRefGoogle Scholar
  29. Olsen L, Sherratt J, Maini P (1996) A mathematical model for fibro-proliferative wound healing disorders. Bull Math Biol 58: 787–808. doi: 10.1007/BF02459482 zbMATHCrossRefGoogle Scholar
  30. Pettet G, Byrne H, Mcelwain D, Norbury J (1996a) A model of wound-healing angiogenesis in soft tissue. Math Biosci 136: 35–63. doi: 10.1016/0025-5564(96)00044-2 zbMATHCrossRefGoogle Scholar
  31. Pettet G, Chaplain M, McElwain D, Byrne H (1996b) On the role of angiogenesis in wound healing RID A-5355-2010. Proc R Soc Lond Ser B Biol Sci 263: 1487–1493. doi: 10.1098/rspb.1996.0217 CrossRefGoogle Scholar
  32. Risau W (1997) Mechanisms of angiogenesis. Nature 386: 671–674CrossRefGoogle Scholar
  33. Roy S, Biswas S, Khanna S, Gordillo G, Bergdall V, Green J, Marsh CB, Gould LJ, Sen CK (2009) Characterization of a preclinical model of chronic ischemic wound. Physiol Genomics 37: 211–224. doi: 10.1152/physiolgenomics.90362.2008 CrossRefGoogle Scholar
  34. Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163: 257–268. doi: 10.1111/j.1365-2133.2010.09804.x CrossRefGoogle Scholar
  35. Schugart RC, Friedman A, Zhao R, Sen CK (2008) Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proc Natl Acad Sci USA 105: 2628–2633. doi: 10.1073/pnas.0711642105 CrossRefGoogle Scholar
  36. Singer A, Clark R (1999) Mechanisms of disease—cutaneous wound healing. N Engl J Med 341: 738–746CrossRefGoogle Scholar
  37. Tranquillo R, Murray J (1992) Continuum model of fibroblast-driven wound contraction—inflammation-mediation. J Theor Biol 158: 135–172. doi: 10.1016/S0022-5193(05)80715-5 CrossRefGoogle Scholar
  38. Williams PL, Warwick R (1980) Gray’s anatomy. Churchill Livingstone, EdinburghGoogle Scholar
  39. Xue C, Friedman A, Sen CK (2009) A mathematical model of ischemic cutaneous wounds. Proc Natl Acad Sci USA 106: 16782–16787. doi: 10.1073/pnas.0909115106 CrossRefGoogle Scholar
  40. Zienkiewicz OC, Taylor RL (2000) The finite element method. Butterworth Heinemann, OxfordzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • C. Valero
    • 1
  • E. Javierre
    • 1
    • 2
    Email author
  • J. M. García-Aznar
    • 1
  • M. J. Gómez-Benito
    • 1
  1. 1.Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A)University of ZaragozaZaragozaSpain
  2. 2.Centro Universitario de la Defensa, Academia General MilitarZaragozaSpain

Personalised recommendations