Biomechanics and Modeling in Mechanobiology

, Volume 11, Issue 7, pp 1097–1108 | Cite as

A multiscale approach to the elastic moduli of biomembrane networks

Original Paper

Abstract

We develop equilibrium fluctuation formulae for the isothermal elastic moduli of discrete biomembrane models at different scales. We account for the coupling of large stretching and bending strains of triangulated network models endowed with harmonic and dihedral angle potentials, on the basis of the discrete-continuum approach presented in Schmidt and Fraternali (J Mech Phys Solids 60:172–180, 2012). We test the proposed equilibrium fluctuation formulae with reference to a coarse-grained molecular dynamics model of the red blood cell (RBC) membrane (Marcelli et al. in Biophys J 89:2473–2480, 2005; Hale et al. in Soft Matter 5:3603–3606, 2009), employing a local maximum-entropy regularization of the fluctuating configurations (Fraternali et al. in J Comput Phys 231:528–540, 2012). We obtain information about membrane stiffening/softening due to stretching, curvature, and microscopic undulations of the RBC model. We detect local dependence of the elastic moduli over the RBC membrane, establishing comparisons between the present theory and different approaches available in the literature.

Keywords

Biomembranes Bending Stretching Thermal fluctuations Red blood cell model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrojo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65: 2167–2202CrossRefGoogle Scholar
  2. Borelli MES, Kleinert H, Schakel AMJ (1999) Derivative expansion of one-loop effective energy of stiff membranes with tension. Phys Lett A 253: 239–246CrossRefGoogle Scholar
  3. Cyron CJ, Arrojo M, Ortiz M (2009) Smooth, second-order, non-negative meshfree approximants selected by maximum entropy. Int J Numer Methods Eng 79: 1605–1632MATHCrossRefGoogle Scholar
  4. Dao M, Li J, Suresh S (2006) Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater Sci Eng 26: 1232–1244CrossRefGoogle Scholar
  5. Discher DE, Boal DH, Boey SK (1997) Phase transitions and anisotropic responses of planar triangular nets under large deformation. Phys Rev E 55(4): 4762–4772CrossRefGoogle Scholar
  6. Fedosov DA, Caswell B, Karniadakis GE (2009) General coarse-grained red blood cell models: I. mechanics. ArXiv e-printsGoogle Scholar
  7. Fraternali F, Lorenz C, Marcelli G (2012) On the estimation of the curvatures and bending rigidity of membrane networks via a local maximum-entropy approach. J Comput Phys 231: 528–540MATHCrossRefGoogle Scholar
  8. Gibson L, Ashby M (1982) The mechanics of three-dimensional cellular materials. Proc R Soc Lond A Mat 382(1782): 43–59CrossRefGoogle Scholar
  9. Gompper G, Kroll D (1996) Random surface discretization and the renormalization of the bending rigidity. J Phys I Fr 6: 1305–1320CrossRefGoogle Scholar
  10. Hale J, Marcelli G, Parker K, Winlowe C, Petrov G (2009) Red blood cell thermal fluctuations: comparison between experiment and molecular dynamics simulations. Soft Matter 5: 3603–3606CrossRefGoogle Scholar
  11. Hartmann D (2010) A multiscale model for red blood cell mechanics. Biomech Model Mechanobiol 9: 1–17CrossRefGoogle Scholar
  12. Helfrich W (1985) Effect of thermal undulations on the rigidity of fluid membranes and interfaces. J Phys 46: 1263–1268CrossRefGoogle Scholar
  13. Helfrich W (1998) Stiffening of fluid membranes and entropy loss of membrane closure: two effects of thermal undulations. Eur Phys J B 1: 481–489CrossRefGoogle Scholar
  14. Helfrich W, Kozlov MM (1993) Bending tensions and the bending rigidity of fluid membranes. J Phys II Fr 3: 287–292CrossRefGoogle Scholar
  15. Helfrich W, Servuss R (1984) Untlulations, steric interactian and cohesion of fldd untlulations, steric interaction and cohesion of fluid membranes. Nuovo Cimento 1: 137–151CrossRefGoogle Scholar
  16. Hess S, Kröger M, Hoover W (1997) Shear modulus of fluids and solids. Phys A 239Google Scholar
  17. Holzapfel GA (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, ChichesterMATHGoogle Scholar
  18. Kleinert H (1986) Thermal softening of curvature elasticity in membranes. Phys Lett A 114: 263–268CrossRefGoogle Scholar
  19. Kohyama T (2009) Simulations of flexible membranes uding a coarse-grained particle-based model with spontaneous curvature variables. Phys A 388: 3334–3344CrossRefGoogle Scholar
  20. Kühnel W (2002) Differential geometry, curves-surfaces-manifolds. American Mathematical Society, Providence, RIMATHGoogle Scholar
  21. Lee J, Discher D (2001) Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding. Biophys J 81: 3178–3192CrossRefGoogle Scholar
  22. Lipowsky R, Girardet M (1990) Shape fluctuations of polymerized or solidlike membranes. Phys Rev Lett 65(23): 2893–2896CrossRefGoogle Scholar
  23. Lutsko J (1989) Generalized expressions for the calculation of the elastic constants by computer simulation. J Appl Phys 8: 2991–2997CrossRefGoogle Scholar
  24. Marcelli G, Parker H, Winlove P (2005) Thermal fluctuations of red blood cell membrane via a constant-area particle-dynamics model. Biophys J 89: 2473–2480CrossRefGoogle Scholar
  25. Mecke KR (1995) Bending rigidity of fluctuating membranes. Z Phys B Condens Mater 97: 379–387CrossRefGoogle Scholar
  26. Müller M, Katsov K, Schick M (2006) Biological and syntetic membranes: what can be learned from a coarse-grained description?. Phys Rep 434: 113–176CrossRefGoogle Scholar
  27. Munkres J (1984) Elements of algebraic topology. Addison-Wesley, Menlo Park, CAMATHGoogle Scholar
  28. Naghdi PM (1972) The theory of shells and plates. In: Flügge’s S (eds) Handbuch der Physik, Vol. VIa/2, C. Trusdell Ed.. Springer, Berlin, pp 425–640Google Scholar
  29. Nelson D, Piran T, Weinberg S, (eds) (2004) Statistical mechanics of membranes and surfaces, 2nd edn. World Scientific, SingaporeGoogle Scholar
  30. Ogden RW (1984) Non-linear elastic deformations. Dover, MineolaGoogle Scholar
  31. Onck P, Koeman T, van Dillen T, van der Glessen E (2005) Alternative explanation of stiffening in cross-linked semiflexible networks. Phys Rev Lett 95Google Scholar
  32. Peliti L, Leibler S (1985) Effects of thermal fluctuations on systems with small surface tensionl fluctuations on systems with small surface tension. Phys Rev Lett 54: 1690–1693CrossRefGoogle Scholar
  33. Pinnow H, Helfrich W (2000) Effect of thermal undulations on the bending elasticity and spontaneous curvature of fluid membranes. Eur Phys J E 3: 149–157CrossRefGoogle Scholar
  34. Pivkin I, Karniadakis G (2008) Accurate coarse-grained modeling of red blood cells. Phys Rev Lett 101Google Scholar
  35. Ray J, Rahman A (1984) Statistical ensembles and molecular dynamics studies of anisotropic solids. J Chem Phys 80(9): 4423–4428CrossRefGoogle Scholar
  36. Schmidt B (2006) A derivation of continuum nonlinear plate theory from atomistic models. SIAM Multiscale Model Simul 5: 664–694MATHCrossRefGoogle Scholar
  37. Schmidt B (2008) On the passage from atomic to continuum theory for thin films. Arch Ration Mech Anal 190: 1–55MathSciNetMATHCrossRefGoogle Scholar
  38. Schmidt B, Fraternali F (2012) Universal formulae for the limiting elastic energy of static membrane networks. J Mech Phys Solids 60: 172–180MathSciNetCrossRefGoogle Scholar
  39. Schöffel P, Möser MH (2001) Elastic constants of quantum solids by path integral simulations. Phys Rev B 63(224108): 1–9Google Scholar
  40. Seung H, Nelson D (1988) Defects in flexible membranes with crystalline order. Phys Rev A 38: 1005–1018CrossRefGoogle Scholar
  41. Smith W, Forester T (1999) The dl_poly_2 molecular simulation package. http://www.cse.clrc.ac.uk/msi/software/DL_POLY
  42. Squire D, Holt A, Hoover W (1969) Isothermal elastic constants for argon. Theory and monte carlo calculations. Physica 42: 388–397CrossRefGoogle Scholar
  43. Tu ZC, Ou-Yang ZC (2008) Elastic theory of low-dimensionale continua and its application in bio- and nano-structures. J Comput Theor Nanosci 5: 422–448CrossRefGoogle Scholar
  44. Yoshimoto K, Papakonstantopoulos G, Lutsko J, de Pablo J (2005) Statistical calculation of the elastic moduli for atomistic models. Phys Rev B 71(181108): 1–6Google Scholar
  45. Zhou Z, Joós B (1996) Stability criteria for homogeneously stressed materials and the calculation of elastic constants. Phys Rev B 54(6): 3841–3850CrossRefGoogle Scholar
  46. Zhou Z, Joós B (1997) Mechanisms of membrane rupture: from cracks to pores. Phys Rev B 56: 2997–3009CrossRefGoogle Scholar
  47. Zhou Z, Joós B (1999) Convergence issues in molecular dynamics simulations of highly entropic materials. Model Simul Mater Sci Eng 7: 383–395CrossRefGoogle Scholar
  48. Zhou Z, Joós B (2002) Fluctuation formulas for the elastic constants of an arbitrary system. Phys Rev B 66Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of SalernoFiscianoItaly
  2. 2.Division of EngineeringKing’s College LondonLondonUK
  3. 3.School of Engineering and Digital ArtsUniversity of KentCanterbury, KentUK

Personalised recommendations