Biomechanics and Modeling in Mechanobiology

, Volume 11, Issue 7, pp 983–993 | Cite as

Mechanical behaviour of in-situ chondrocytes subjected to different loading rates: a finite element study

  • E. K. Moo
  • W. Herzog
  • S. K. Han
  • N. A. Abu Osman
  • B. Pingguan-Murphy
  • S. Federico
Original Paper


Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.


Finite element modelling Impact loading Chondrocyte mechanics Cell membrane damage Osteoarthritis Cartilage mechano-biology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abusara Z, Seerattan R, Leumann A, Thompson R, Herzog W (2011) A novel method for determining articular cartilage chondrocyte mechanics in vivo. J Biomech 44(5): 930–934CrossRefGoogle Scholar
  2. Alexopoulos LG, Setton LA, Guilak F (2005) The biomechanical role of the chondrocyte pericellular matrix in articular cartilage. Acta Biomater 1(3): 317–325CrossRefGoogle Scholar
  3. Alexopoulos LG, Williams GM, Upton ML, Setton LA, Guilak F (2005) Osteoarthritic changes in the biphasic mechanical properties of the chondrocyte pericellular matrix in articular cartilage. J Biomech 38(3): 509–517CrossRefGoogle Scholar
  4. Ateshian GA, Costa KD, Hung CT (2007) A theoretical analysis of water transport through chondrocytes. Biomech Model Mechanobiol 6(1–2): 91–101CrossRefGoogle Scholar
  5. Bevensee MO, Schwiening CJ, Boron WF (1995) Use of bcecf and propidium iodide to assess membrane integrity of acutely isolated ca1 neurons from rat hippocampus. J Neurosci Methods 58(1–2): 61–75CrossRefGoogle Scholar
  6. Blanco FJ, Guitian R, Vázquez-Martul E, de Toro FJ, Galdo F (1998) Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthr Rheum 41(2): 284–289CrossRefGoogle Scholar
  7. Brandt K, Mankin H, Shulman L (1986) Workshop on etiopathogenesis of osteoarthritis. J Rheumatol 13: 1126–1160Google Scholar
  8. Chahine NO, Ateshian GA, Hung CT (2007) The effect of finite compressive strain on chondrocyte viability in statically loaded bovine articular cartilage. Biomech Model Mechanobiol 6(1–2): 103–111CrossRefGoogle Scholar
  9. Duda GN, Eilers M, Loh L, Hoffman JE, Kääb M, Schaser K (2001) Chondrocyte death precedes structural damage in blunt impact trauma. Clin Orthop Relat Res 393: 302–309CrossRefGoogle Scholar
  10. Escolar G, Leistikow E, White JG (1989) The fate of the open canalicular system in surface and suspension-activated platelets. Blood 74(6): 1983–1988Google Scholar
  11. Evans EA, Skalak R (1979) Mechanics and thermodynamics of biomembranes: part 1. CRC Crit Rev Bioeng 3(3): 181–330Google Scholar
  12. Ewers BJ, Dvoracek-Driksna D, Orth MW, Haut RC (2001) The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading. J Orthop Res Off Publ Orthop Res Soc 19(5): 779–784Google Scholar
  13. Federico S, Grillo A, Herzog W (2004) A transversely isotropic composite with a statistical distribution of spheroidal inclusions: a geometrical approach to overall properties. J Mech Phys Solids 52(10): 2309–2327MathSciNetMATHCrossRefGoogle Scholar
  14. Federico S, Grillo A, Larosa G, Giaquinta G, Herzog W (2005) A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage. Jv Biomech 38(10): 2008–2018CrossRefGoogle Scholar
  15. Geddes DM, Cargill RS, LaPlaca MC (2003) Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability. J Neurotrauma 20(10): 1039–1049CrossRefGoogle Scholar
  16. Grillo A, Wittum G, Giaquinta G, Micunovic MV (2009) A multiscale analysis of growth and diffusion dynamics in biological materials. Int J Eng Sci 47(2): 261–283MathSciNetMATHCrossRefGoogle Scholar
  17. Guilak F, Mow VC (1992) Determination of the mechanical response of the chondrocyte in situ using finite element modeling and confocal microscopy. ASME Adv Bioeng BED 20: 21–23Google Scholar
  18. Guilak F, Mow VC (2000) The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J Biomech 33(12): 1663–1673CrossRefGoogle Scholar
  19. Guilak F, Ratcliffe A, Mow VC (1995) Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J Orthop Res Off Publ Orthop Res Soc 13(3): 410–421Google Scholar
  20. Han SK, Federico S, Grillo A, Giaquinta G, Herzog W (2007) The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage. Biomech Model Mechanobiol 6(3): 139–150CrossRefGoogle Scholar
  21. Han SK, Federico S, Herzog W (2011) A depth-dependent model of the pericellular microenvironment of chondrocytes in articular cartilage. Comput Methods Biomech Biomed Eng 14(7): 657–664CrossRefGoogle Scholar
  22. Hassanizadeh SM (1986) Derivation of basic equations of mass transport in porous media, part 1. Macroscopic balance laws. Adv Water Resour 9(4): 196–206CrossRefGoogle Scholar
  23. Hedlund H, Mengarelli-Widholm S, Reinholt FP, Svensson O (1993) Stereologic studies on collagen in bovine articular cartilage. APMIS 101(1–6): 133–140CrossRefGoogle Scholar
  24. Holmes MH, Mow VC (1990) The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J Biomech 23(11): 1145–1156CrossRefGoogle Scholar
  25. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1): 11–25CrossRefGoogle Scholar
  26. Isaac DI, Meyer EG, Haut RC (2008) Chondrocyte damage and contact pressures following impact on the rabbit tibiofemoral joint. J Biomech Eng 130(4): 041,018–041,018CrossRefGoogle Scholar
  27. Islam N, Haqqi TM, Jepsen KJ, Kraay M, Welter JF, Goldberg VM, Malemud CJ (2002) Hydrostatic pressure induces apoptosis in human chondrocytes from osteoarthritic cartilage through up-regulation of tumor necrosis factor-alpha, inducible nitric oxide synthase, p53, c-myc, and bax-alpha, and suppression of bcl-2. J Cell Biochem 87(3): 266–278CrossRefGoogle Scholar
  28. Jay AW, Canham PB (1977) Viscoelastic properties of the human red blood cell membrane. ii. area and volume of individual red cells entering a micropipette. Biophys J 17(2): 169–178CrossRefGoogle Scholar
  29. Kurz B, Jin M, Patwari P, Cheng DM, Lark MW, Grodzinsky AJ (2001) Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J Orthop Res 19(6): 1140–1146CrossRefGoogle Scholar
  30. Li L, Herzog W, Korhonen R, Jurvelin J (2005) The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression. Med Eng Phys 27(1): 51–57CrossRefGoogle Scholar
  31. Mankin HJ (1963) Localization of tritiated thymidine in articular cartilage of rabbits: Iii. Mature articular cartilage. J Bone Jt Surg Am 45(3): 529–540Google Scholar
  32. Maroudas A, Bullough P (1968) Permeability of articular cartilage. Nature 219(5160): 1260–1261CrossRefGoogle Scholar
  33. McNeil PL, Steinhardt RA (2003) Plasma membrane disruption: repair, prevention, adaptation. Annu Rev Cell Dev Biol 19: 697–731CrossRefGoogle Scholar
  34. Milentijevic D, Torzilli PA (2005) Influence of stress rate on water loss, matrix deformation and chondrocyte viability in impacted articular cartilage. J Biomech 38(3): 493–502CrossRefGoogle Scholar
  35. Milentijevic D, Helfet DL, Torzilli PA (2003) Influence of stress magnitude on water loss and chondrocyte viability in impacted articular cartilage. J Biomech Eng 125(5): 594–601CrossRefGoogle Scholar
  36. Mow VC, Guilak F (1993) Deformation of chondrocytes within the extracellular matrix of articular cartilage. Birkhäuser, Boston, pp 128–145Google Scholar
  37. Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102(1): 73–84CrossRefGoogle Scholar
  38. Nakamura S, Arai Y, Takahashi KA, Terauchi R, Ohashi S, Mazda O, Imanishi J, Inoue A, Tonomura H, Kubo T (2006) Hydrostatic pressure induces apoptosis of chondrocytes cultured in alginate beads. J Orthop Res Off Publ Orthop Res Soc 24(4): 733–739Google Scholar
  39. Nguyen BV, Wang Q, Kuiper NJ, El Haj AJ, Thomas CR, Zhang Z (2009) Strain-dependent viscoelastic behaviour and rupture force of single chondrocytes and chondrons under compression. Biotechnol Lett 31(6): 803–809CrossRefGoogle Scholar
  40. Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW (1993) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci USA 90(24): 11,663–11,667CrossRefGoogle Scholar
  41. Poole CA, Flint MH, Beaumont BW (1987) Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages. J Orthop Res Off Publ Orthop Res Soc 5(4): 509–522Google Scholar
  42. Quinn TM, Allen RG, Schalet BJ, Perumbuli P, Hunziker EB (2001) Matrix and cell injury due to sub-impact loading of adult bovine articular cartilage explants: effects of strain rate and peak stress. J Orthop Res Off Publ Orthop Res Soc 19(2): 242–249Google Scholar
  43. Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77(4): 1992–2002CrossRefGoogle Scholar
  44. Repo RU, Finlay JB (1977) Survival of articular cartilage after controlled impact. J Bone Jt Surg A 59(8): 1068–1076Google Scholar
  45. Schinagl RM, Gurskis D, Chen AC, Sah RL (1997) Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res Off Publ Orthop Res Soc 15(4): 499– 506Google Scholar
  46. Sheetz MP, Dai J (1996) Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol 6(3): 85–89CrossRefGoogle Scholar
  47. Shi R, Whitebone J (2006) Conduction deficits and membrane disruption of spinal cord axons as a function of magnitude and rate of strain. J Neurophysiol 95(6): 3384–3390CrossRefGoogle Scholar
  48. Shieh AC, Athanasiou KA (2006) Biomechanics of single zonal chondrocytes. J Biomech 39(9): 1595–1602CrossRefGoogle Scholar
  49. Simon WH, Richardson S, Herman W, Parsons JR, Lane J (1976) Long-term effects of chondrocyte death on rabbit articular cartilage in vivo. J Bone Jt Surg Am 58(4): 517–526Google Scholar
  50. Stroetz RW, Vlahakis NE, Walters BJ, Schroeder MA, Hubmayr RD (2001) Validation of a new live cell strain system: characterization of plasma membrane stress failure. J Appl Physiol 90(6): 2361–2370Google Scholar
  51. Trickey WR, Lee GM, Guilak F (2000) Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J Orthop Res Off Publ Orthop Res Soc 18(6): 891–898Google Scholar
  52. Wang CCB, Chahine NO, Hung CT, Ateshian GA (2003) Optical determination of anisotropic material properties of bovine articular cartilage in compression. J Biomech 36(3): 339–353CrossRefGoogle Scholar
  53. Ward MD, Hammer DA (1993) A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Biophys J 64(3): 936–959CrossRefGoogle Scholar
  54. Waugh RE (1983) Effects of abnormal cytoskeletal structure on erythrocyte membrane mechanical properties. Cell Motil 3(5–6): 609–622Google Scholar
  55. Wu JZ, Herzog W (2000) Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests. Ann Biomed Eng 28(3): 318–330CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • E. K. Moo
    • 1
  • W. Herzog
    • 2
    • 3
  • S. K. Han
    • 2
  • N. A. Abu Osman
    • 1
  • B. Pingguan-Murphy
    • 1
  • S. Federico
    • 3
  1. 1.Department of Biomedical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Human Performance Laboratory, Faculty of KinesiologyThe University of CalgaryCalgaryCanada
  3. 3.Department of Mechanical and Manufacturing Engineering, Schulich School of EngineeringThe University of CalgaryCalgaryCanada

Personalised recommendations