Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 11, Issue 8, pp 1241–1249 | Cite as

Matrix compliance and RhoA direct the differentiation of mammary progenitor cells

  • Cecillia Lui
  • KangAe Lee
  • Celeste M. NelsonEmail author
Original Paper

Abstract

The regenerative capacity of the mammary gland following post-lactational involution depends on the presence of multipotent stem or progenitor cells. Mammary progenitor cells exist as a quiescent and self-renewing population capable of differentiating into luminal epithelial and myoepithelial cells and generating ductal and alveolar structures. The fate choices of these cells are regulated by several soluble signals as well as their surrounding extracellular matrix. Whereas matrix stiffness has been implicated in organ-specific differentiation of embryonic and mesenchymal stem cells, the effects of substratum compliance on the more limited fate switches typical of tissue-specific progenitor cells are unknown. Here, we examined how the mechanical properties of the microenvironment affect the differentiation of mammary progenitor cells. Immortalized human mammary progenitor cells were cultured on synthetic hydrogels of varying stiffness, and their self-renewal and fate decisions were quantified. We found that cells cultured on soft substrata differentiated preferentially into luminal epithelial cells, whereas those cultured on stiff substrata differentiated preferentially into myoepithelial cells. Furthermore, pharmacological manipulations of cytoskeletal tension in conjunction with analysis of gene expression revealed that mechanical properties of the microenvironment signal through the small GTPase RhoA and cytoskeletal contractility to modulate the differentiation of mammary progenitor cells. These data suggest that subtle variations in the mechanical compliance of a tissue can direct the fate decisions of its resident progenitor cells.

Keywords

Mammary stem cells Differentiation Matrix compliance RhoA Mechanical stress Branching morphogenesis 

Abbreviations

ECM

Extracellular matrix

ES

Embryonic stem

FAK

Focal adhesion kinase

MLCK

Myosin light chain kinase

MSCs

Mesenchymal stem cells

PA

Polyacrylamide

ROCK

Rho-associated kinase

TDLU

Terminal ductal lobular unit

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcaraz J, Xu R, Mori H, Nelson CM, Mroue R, Spencer VA, Brownfield D, Radisky DC, Bustamante C, Bissell MJ (2008) Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO J 27(21): 2829–2838CrossRefGoogle Scholar
  2. Alenghat FJ, Ingber DE (2002) Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE [electronic resource]: signal transduction knowledge environment (119)Google Scholar
  3. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Phosphorylation and activation of myosin by rho-associated kinase (rho-kinase). J Biol Chem 271(34): 20246–20249. doi: 10.1074/jbc.271.34.20246 CrossRefGoogle Scholar
  4. Anderson LH, Boulanger CA, Smith GH, Carmeliet P, Watson CJ (2011) Stem cell marker prominin-1 regulates branching morphogenesis, but not regenerative capacity, in the mammary gland. Dev Dyn 240(3): 674–681. doi: 10.1002/dvdy.22539 CrossRefGoogle Scholar
  5. Batistatou A, Stefanou D, Arkoumani E, Agnantis NJ (2003) The usefulness of p63 as a marker of breast myoepithelial cells. In Vivo 17(6): 573–576Google Scholar
  6. Beningo KA, Dembo M, Kaverina I, Small JV, Wang Y-l (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153(4): 881–888. doi: 10.1083/jcb.153.4.881 CrossRefGoogle Scholar
  7. Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19(1): 677–695. doi: 10.1146/annurev.cellbio.19.111301.153011 CrossRefGoogle Scholar
  8. Boudou T, Ohayon J, Picart C, Tracqui P (2006) An extended relationship for the characterization of Young’s modulus and Poisson’s ratio of tunable polyacrylamide gels. Biorheology 43(6): 721–728Google Scholar
  9. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351(Pt 1): 95–105CrossRefGoogle Scholar
  10. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6(6): R605–615CrossRefGoogle Scholar
  11. Emerman JT, Burwen SJ, Pitelka DR (1979) Substrate properties influencing ultrastructural differentiation of mammary epithelial cells in culture. Tissue Cell 11(1): 109–119CrossRefGoogle Scholar
  12. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4): 677–689. doi: 10.1016/j.cell.2006.06.044 CrossRefGoogle Scholar
  13. Evans ND, Minelli C, Gentleman E, LaPointe V, Patankar SN, Kallivretaki M, Chen X, Roberts CJ, Stevens MM (2009) Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater 18: 1–13 (discussion 13–14)Google Scholar
  14. Eyckmans J, Boudou T, Yu X, Chen CS (2011) A hitchhiker’s guide to mechanobiology. Dev Cell 21(1): 35–47CrossRefGoogle Scholar
  15. Gjorevski N, Nelson CM (2010) Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr Biol Camb 2(9): 424–434CrossRefGoogle Scholar
  16. Gjorevski N, Nelson CM (2011) Integrated morphodynamic signalling of the mammary gland. Nat Rev Mol Cell Biol 12: 581–593CrossRefGoogle Scholar
  17. Ingber DE (2004) The mechanochemical basis of cell and tissue regulation. Mech Chem Biosyst MCB 1(1): 53–68Google Scholar
  18. Ishihara H, Martin BL, Brautigan DL, Karaki H, Ozaki H, Kato Y, Fusetani N, Watabe S, Hashimoto K, Uemura D et al (1989) Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun 159(3): 871–877CrossRefGoogle Scholar
  19. Ishizaki T, Naito M, Fujisawa K, Maekawa M, Watanabe N, Saito Y, Narumiya S (1997) p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett 404(2–3): 118–124. doi: 10.1016/s0014-5793(97)00107-5 CrossRefGoogle Scholar
  20. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by rho and rho-associated kinase (rho-kinase). Science 273(5272): 245–248. doi: 10.1126/science.273.5272.245 CrossRefGoogle Scholar
  21. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, Clouthier SG, Wicha MS (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 7(6): e1000121CrossRefGoogle Scholar
  22. LaBarge MA, Nelson CM, Villadsen R, Fridriksdottir A, Ruth JR, Stampfer MR, Petersen OW, Bissell MJ (2009) Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr Biol 1: 70–79CrossRefGoogle Scholar
  23. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139: 891–906CrossRefGoogle Scholar
  24. Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, Vaillant F, Yagita H, Lindeman GJ, Smyth GK, Visvader JE (2010) Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res 12(2): R21CrossRefGoogle Scholar
  25. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66(12): 6063–6071CrossRefGoogle Scholar
  26. Lorenzen J, Sinkus R, Biesterfeldt M, Adam G (2003) Menstrual-cycle dependence of breast parenchyma elasticity: estimation with magnetic resonance elastography of breast tissue during the menstrual cycle. Invest Radiol 38(4): 236–240. doi: 10.1097/01.RLI.0000059544.18910.BD Google Scholar
  27. Lorenzen J, Sinkus R, Lorenzen M, Dargatz M, Leussler C, Roschmann P, Adam G (2002) MR elastography of the breast:preliminary clinical results. Rofo 174(7): 830–834. doi: 10.1055/s-2002-32690 CrossRefGoogle Scholar
  28. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4): 483–495. doi: 10.1016/s1534-5807(04)00075-9 CrossRefGoogle Scholar
  29. Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6(1): 56–68CrossRefGoogle Scholar
  30. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3): 241–254CrossRefGoogle Scholar
  31. Pelham RJ, Wang Y-l (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25): 13661–13665CrossRefGoogle Scholar
  32. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411): 143–147CrossRefGoogle Scholar
  33. Samani A, Zubovits J, Plewes D (2007) Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol 52(6): 1565–1576CrossRefGoogle Scholar
  34. Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2(12): a005066CrossRefGoogle Scholar
  35. Srivastava A, Verma Y, Rao KD, Gupta PK (2011) Determination of elastic properties of resected human breast tissue samples using optical coherence tomographic elastography. Strain 47: 75–87CrossRefGoogle Scholar
  36. Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98(2): 137–146CrossRefGoogle Scholar
  37. Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299(5613): 1743–1747CrossRefGoogle Scholar
  38. Taddei I, Deugnier MA, Faraldo MM, Petit V, Bouvard D, Medina D, Fassler R, Thiery JP, Glukhova MA (2008) Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nat Cell Biol 10(6): 716–722CrossRefGoogle Scholar
  39. Tamada M, Sheetz MP, Sawada Y (2004) Activation of a signaling ascade by cytoskeleton stretch. Dev Cell 7(5): 709–718. doi: 10.1016/j.devcel.2004.08.021 CrossRefGoogle Scholar
  40. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391): 1145–1147CrossRefGoogle Scholar
  41. Tiede B, Kang Y (2011) From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res 21(2): 245–257CrossRefGoogle Scholar
  42. Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177(1): 87–101CrossRefGoogle Scholar
  43. Visvader JE, Smith GH (2011) Murine mammary epithelial stem cells: discovery, function, and current status. Cold Spring Harb Perspect Biol 3(2): a004879CrossRefGoogle Scholar
  44. Woodward WA, Chen MS, Behbod F, Rosen JM (2005) On mammary stem cells. J Cell Sci 118(Pt 16): 3585–3594. doi: 10.1242/jcs.02532 CrossRefGoogle Scholar
  45. Wozniak MA, Desai R, Solski PA, Der CJ, Keely PJ (2003) ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 163(3): 583–595CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Cecillia Lui
    • 1
  • KangAe Lee
    • 1
    • 2
  • Celeste M. Nelson
    • 1
    • 2
    Email author
  1. 1.Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations