Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 11, Issue 6, pp 869–882 | Cite as

A remodelling metric for angular fibre distributions and its application to diseased carotid bifurcations

  • Arthur Creane
  • Eoghan Maher
  • Sherif Sultan
  • Niamh Hynes
  • Daniel J. Kelly
  • Caitríona Lally
Original Paper

Abstract

Many soft biological tissues contain collagen fibres, which act as major load bearing constituents. The orientation and the dispersion of these fibres influence the macroscopic mechanical properties of the tissue and are therefore of importance in several areas of research including constitutive model development, tissue engineering and mechanobiology. Qualitative comparisons between these fibre architectures can be made using vector plots of mean orientations and contour plots of fibre dispersion but quantitative comparison cannot be achieved using these methods. We propose a ‘remodelling metric’ between two angular fibre distributions, which represents the mean rotational effort required to transform one into the other. It is an adaptation of the earth mover’s distance, a similarity measure between two histograms/signatures used in image analysis, which represents the minimal cost of transforming one distribution into the other by moving distribution mass around. In this paper, its utility is demonstrated by considering the change in fibre architecture during a period of plaque growth in finite element models of the carotid bifurcation. The fibre architecture is predicted using a strain-based remodelling algorithm. We investigate the remodelling metric’s potential as a clinical indicator of plaque vulnerability by comparing results between symptomatic and asymptomatic carotid bifurcations. Fibre remodelling was found to occur at regions of plaque burden. As plaque thickness increased, so did the remodelling metric. A measure of the total predicted fibre remodelling during plaque growth, TRM, was found to be higher in the symptomatic group than in the asymptomatic group. Furthermore, a measure of the total fibre remodelling per plaque size, TRM/TPB, was found to be significantly higher in the symptomatic vessels. The remodelling metric may prove to be a useful tool in other soft tissues and engineered scaffolds where fibre adaptation is also present.

Keywords

Biomechanics Carotid bifurcation Fibre remodelling Remodelling metric Earth mover’s distance Patient-specific models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghamohammadzadeh H, Newton R, Meek K (2004) X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure 12(2): 249–256Google Scholar
  2. Badylak S, Freytes D, Gilbert T (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5(1): 1–13CrossRefGoogle Scholar
  3. Canham PB, Finlay HM (2004) Morphometry of medial gaps of human brain artery branches. Stroke 35(5): 1153–1157. doi: 10.1161/01.Str.0000124926.76836.Df CrossRefGoogle Scholar
  4. Creane A, Maher E, Sultan S, Hynes N, Kelly DJ, Lally C (2010a) Finite element modelling of diseased carotid bifurcations generated from in vivo computerised tomographic angiography. Comput Biol Med 40(4): 419–429. doi: 10.1016/j.compbiomed.2010.02.006 CrossRefGoogle Scholar
  5. Creane A, Maher E, Sultan S, Hynes N, Kelly DJ, Lally C (2010b) Prediction of fibre architecture and adaptation in diseased carotid bifurcations. Biomech Model Mechanobiol. doi: 10.1007/s10237-010-0277-8
  6. Driessen NJB, Wilson W, Bouten CVC, Baaijens FPT (2004) A computational model for collagen fibre remodelling in the arterial wall. J Theor Biol 226(1): 53–64. doi: 10.1016/j.jtbi.2003.08.004 CrossRefGoogle Scholar
  7. Driessen NJB, Bouten CVC, Baaijens FPT (2005) A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J Biomech Eng-T Asme 127(3): 494–503. doi: 10.1115/1.1894373 CrossRefGoogle Scholar
  8. Driessen NJB, Cox MAJ, Bouten CVC, Baaijens FPT (2008) Remodelling of the angular collagen fiber distribution in cardiovascular tissues. Biomech Model Mech 7(2): 93–103. doi: 10.1007/s10237-007-0078-x CrossRefGoogle Scholar
  9. Finlay HM, Whittaker P, Canham PB (1998) Collagen organization in the branching region of human brain arteries. Stroke 29(8): 1595–1601CrossRefGoogle Scholar
  10. Flamini V, Kerskens C, Moerman KM, Simms CK, Lally C (2010) Imaging arterial fibres using diffusion tensor imaging-feasibility study and preliminary results. Eurasip J Adv Sig Pr. doi: 10.1155/2010/904091
  11. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interf 3(6): 15–35. doi: 10.1098/rsif.2005.0073 CrossRefGoogle Scholar
  12. Gilbert TW, Wognum S, Joyce EM, Freytes DO, Sacks MS, Badylak SF (2008) Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials 29(36): 4775–4782. doi: 10.1016/j.biomaterials.2008.08.022 CrossRefGoogle Scholar
  13. Grytz R, Meschke G (2010) A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells. Biomech Model Mechanobiol 9(2): 225–235. doi: 10.1007/s10237-009-0173-2 CrossRefGoogle Scholar
  14. Grytz R, Meschke G, Jonas JB (2010) The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech Model Mechanobiol. doi: 10.1007/s10237-010-0240-8
  15. Hariton I, Debotton G, Gasser TC, Holzapfel GA (2007) Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J Theor Biol 248(3): 460–470. doi: 10.1016/j.jtbi.2007.05.037 CrossRefGoogle Scholar
  16. Holzapfel GA (2006) Determination of material models for arterial walls from uniaxial extension tests and histological structure. J Theor Biol 238(2): 290–302. doi: 10.1016/j.jtbi.2005.05.006 MathSciNetCrossRefGoogle Scholar
  17. Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc R Soc Math Phys 466(2118): 1551–1596. doi: 10.1098/rspa.2010.0058 MathSciNetCrossRefGoogle Scholar
  18. Kuhl E, Holzapfel GA (2007) A continuum model for remodeling in living structures. J Mater Sci 42(21): 8811–8823. doi: 10.1007/s10853-007-1917-y CrossRefGoogle Scholar
  19. Levina E, Bickel P (2002) The earth mover’s distance is the mallows distance: some insights from statistics. IEEE, pp 251–256Google Scholar
  20. Maher E, Creane A, Sultan S, Hynes N, Lally C, Kelly DJ (2009) Tensile and compressive properties of fresh human carotid atherosclerotic plaques. J Biomech 42(16): 2760–2767. doi: 10.1016/j.jbiomech.2009.07.032 CrossRefGoogle Scholar
  21. Meek K, Tuft S, Huang Y, Gill P, Hayes S, Newton R, Bron A (2005) Changes in collagen orientation and distribution in keratoconus corneas. Investigat Ophthalmol Vis Sci 46(6): 1948CrossRefGoogle Scholar
  22. Moneta GL, Edwards JM, Chitwood RW, Taylor LM, Jr., Lee RW, Cummings CA, Porter JM (1993) Correlation of north american symptomatic carotid endarterectomy trial (nascet) angiographic definition of 70% to 99% internal carotid artery stenosis with duplex scanning. J Vasc Surg 17(1):152–157; discussion 157–159. doi: 0741-5214(93)90019-I[pii] Google Scholar
  23. Nagel T, Kelly DJ (2010) Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair. Biomech Model Mech 9(3): 359–372. doi: 10.1007/s10237-009-0182-1 CrossRefGoogle Scholar
  24. O’Connell MK, Murthy S, Phan S, Xu C, Buchanan J, Spilker R, Dalman RL, Zarins CK, Denk W, Taylor CA (2008) The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3d confocal and electron microscopy imaging. Matrix Biol 27(3): 171–181. doi: 10.1016/j.matbio.2007.10.008 CrossRefGoogle Scholar
  25. Peleg S, Werman M, Rom H (1989) A unified approach to the change of resolution: space and gray-level. Pattern Anal Mach Intell IEEE Trans Pattern Anal 11(7): 739–742CrossRefGoogle Scholar
  26. Pierce DM, Trobin W, Raya JG, Trattnig S, Bischof H, Glaser C, Holzapfel GA (2010) DT-MRI based computation of collagen fiber deformation in human articular cartilage: a feasibility study. Ann Biomed Eng 38(7): 2447–2463. doi: 10.1007/s10439-010-9990-9 CrossRefGoogle Scholar
  27. Rhodin JAG (1980) Architecture of the vessel wall. In: Sparks HV, Bohr DF, Somlyo AD, Geiger SR (eds) Handbook of physiology, the cardiovascular system. American Physiological Society, Bethesda, vol 2, pp 1–31Google Scholar
  28. Rowe AJ, Finlay HM, Canham PB (2003) Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy. J Vasc Res 40(4): 406–415. doi: 10.1159/000072831 CrossRefGoogle Scholar
  29. Rubner Y, Tomasi C, Guibas L (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2): 99–121CrossRefGoogle Scholar
  30. Sacks MS (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng 125(2): 280–287CrossRefGoogle Scholar
  31. Sacks MS, Gloeckner DC (1999) Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa. J Biomed Mater Res 46(1): 1–10. doi: 10.1002/(SICI)1097-4636(199907)46:1<1::AID-JBM1>3.0.CO;2-7[pii] CrossRefGoogle Scholar
  32. Tower TT, Tranquillo RT (2001) Alignment maps of tissues: Ii. Fast harmonic analysis for imaging. Biophys J 81(5): 2964–2971. doi: 10.1016/S0006-3495(01)75936-X CrossRefGoogle Scholar
  33. Wells SM, Sellaro T, Sacks MS (2005) Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture. Biomaterials 26(15): 2611–2619. doi: 10.1016/j.biomaterials.2004.06.046 CrossRefGoogle Scholar
  34. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1(6): 80–83CrossRefGoogle Scholar
  35. Wilson W, Driessen NJ, van Donkelaar CC, Ito K (2006) Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthr Cartilage 14(11): 1196–1202. doi: 10.1016/j.joca.2006.05.006 CrossRefGoogle Scholar
  36. Wu EX, Wu Y, Nicholls JM, Wang J, Liao S, Zhu S, Lau CP, Tse HF (2007) Mr diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model. Magn Reson Med 58(4): 687–695. doi: 10.1002/mrm.21350 CrossRefGoogle Scholar
  37. Zhang S, Crow JA, Yang X, Chen J, Borazjani A, Mullins KB, Chen W, Cooper RC, McLaughlin RM, Liao J (2010) The correlation of 3d dt-mri fiber disruption with structural and mechanical degeneration in porcine myocardium. Ann Biomed Eng 38(10): 3084–3095. doi: 10.1007/s10439-010-0073-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Arthur Creane
    • 1
  • Eoghan Maher
    • 2
  • Sherif Sultan
    • 3
    • 4
  • Niamh Hynes
    • 3
    • 4
  • Daniel J. Kelly
    • 2
  • Caitríona Lally
    • 1
    • 2
  1. 1.School of Mechanical and Manufacturing EngineeringDublin City UniversityDublin 9Ireland
  2. 2.Trinity Centre for Bioengineering, School of EngineeringTrinity CollegeDublin 2Ireland
  3. 3.Department of Vascular & Endovascular Surgery, Western Vascular InstituteUniversity College Hospital GalwayGalwayIreland
  4. 4.Department of Vascular & Endovascular SurgeryGalway ClinicGalwayIreland

Personalised recommendations