Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 11, Issue 6, pp 815–827 | Cite as

Effect of bending rigidity in a dynamic model of a polyurethane prosthetic mitral valve

  • X. Y. LuoEmail author
  • B. E. Griffith
  • X. S. Ma
  • M. Yin
  • T. J. Wang
  • C. L. Liang
  • P. N. Watton
  • G. M. Bernacca
Original Paper

Abstract

We investigate the behaviour of a dynamic fluid–structure interaction model of a chorded polyurethane mitral valve prosthesis, focusing on the effects on valve dynamics of including descriptions of the bending stiffnesses of the valve leaflets and artificial chordae tendineae. Each of the chordae is attached at one end to the valve annulus and at the other to one of two chordal attachment points. These attachment points correspond to the positions where the chords of the real prosthesis would attach to the left-ventricular wall, although in the present study, these attachment points are kept fixed in space to facilitate comparison between our simulations and earlier results obtained from an experimental test rig. In our simulations, a time-dependent pressure difference derived from experimental measurements drives flow through the model valve during diastole and provides a realistic pressure load during systole. In previous modelling studies of this valve prosthesis, the valve presents an unrealistically large orifice at beginning of diastole and does not close completely at the end of diastole. We show that including a description of the chordal bending stiffness enables the model valve to close properly at the end of the diastolic phase of the cardiac cycle. Valve over-opening is eliminated only by incorporating a description of the bending stiffnesses of the valve leaflets into the model. Thus, bending stiffness plays a significant role in the dynamic behaviour of the polyurethane mitral valve prosthesis.

Keywords

Mitral valve Immersed boundary methods Dynamic simulation Adaptive method Chordae tendineae Bending stiffness Boundary conditions Fluid–structure interaction Polyurethane prosthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnoldi A, Invernizzi A et al (2010) Mitral valve models reconstructor: a Python based GUI software in a HPC environment for patient-specific FEM structural analysis. Innov Adv Comput Sci Eng 215–219Google Scholar
  2. Balay S, Eijkhout V et al (1997) Efficient management of parallelism in object oriented numerical software libraries. In: Arge E, Bruaset AM, Langtangen HP (eds) Modern software tools in scientific computing. Birkhäuser Press, Boston, pp 163–202CrossRefGoogle Scholar
  3. Balay S, Buschelman K et al (2008) PETSc users manual. Technical Report ANL-95/11—Revision 3.0.0, Argonne National LaboratoryGoogle Scholar
  4. Balay S, Buschelman K et al (2009) PETSc. Web Page: http://www.mcs.anl.gov/petsc
  5. Boffi D, Gastaldi L et al (2008) On the hyper-elastic formulation of the immersed boundary method. Comput Methods Appl Mech Eng 197(25–28): 2210–2231MathSciNetzbMATHCrossRefGoogle Scholar
  6. Cai ZX, Luo XY (2003) A fluid-beam model for flow in a collapsible channel. J Fluids Struct 17(1): 125–146CrossRefGoogle Scholar
  7. Dal Pan F, Donzella G et al (2005) Structural effects of an innovative surgical technique to repair heart valve defects. J Biomech 38(12): 2460–2471CrossRefGoogle Scholar
  8. Einstein DR, Reinhall P et al (2003) Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput Methods Biomech Biomed Eng 6(1): 33–44CrossRefGoogle Scholar
  9. Einstein DR, Kunzelman KS et al (2005) Non-linear fluid-coupled computational model of the mitral valve. J Heart Valve Dis 14(3): 376–385Google Scholar
  10. Einstein DR, Del Pin F et al (2010) Fluid-structure interactions of the mitral valve and left heart: comprehensive strategies, past, present and future. Int J Numer Methods Biomed Eng 26(3–4): 348–380MathSciNetzbMATHCrossRefGoogle Scholar
  11. Falgout RD, Yang UM (2002) Hypre: a library of high performance preconditioners. In: Sloot PMA, Tan CJK, Dongarra JJ, Hoekstra AG (eds) Computational science—ICCS 2002 Part III, vol 2331, pp 632–641Google Scholar
  12. Fisher J, Jack GR et al (1986) Design of a function test apparatus for prosthetic heart valves. Initial results in the mitral position. Clin Phys Physiol Meas 7: 63CrossRefGoogle Scholar
  13. Gorlin R, Gorlin SG (1951) Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. I 1. Am Heart J 41(1): 1–29CrossRefGoogle Scholar
  14. Griffith BE (2005) Simulating the blood-muscle-valve mechanics of the heart by an adaptive and parallel version of the immersed boundary method, PhD Thesis, Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New YorkGoogle Scholar
  15. Griffith BE, Hornung RD et al (2007) An adaptive, formally second order accurate version of the immersed boundary method. J Comput Phys. 223(1): 10–49MathSciNetzbMATHCrossRefGoogle Scholar
  16. Griffith BE (2009) An accurate and efficient method for the incompressible Navier–Stokes equations using the projection method as a preconditioner. J Comput Phys 228(20): 7565–7595MathSciNetzbMATHCrossRefGoogle Scholar
  17. Griffith BE (2011a) Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int J Numer Methods Biomed Eng (in press)Google Scholar
  18. Griffith BE (2011b) On the volume conservation of the immersed boundary method. Commun Comput Phys (in press)Google Scholar
  19. Griffith BE, Luo XY (2011) The immersed boundary method with finite element elasticity (submitted)Google Scholar
  20. Griffith BE, Peskin CS (2005) On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems. J Comput Phys 208(1): 75–105MathSciNetzbMATHCrossRefGoogle Scholar
  21. Griffith BE, Luo XY et al (2009) Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int J Appl Mech 1(1): 137–177CrossRefGoogle Scholar
  22. Hornung RD, Kohn SR (2002) Managing application complexity in the SAMRAI object-oriented framework. Concurr Comput Pract Experience 14(5): 347–368zbMATHCrossRefGoogle Scholar
  23. Hornung RD, Wissink AM et al (2006) Managing complex data and geometry in parallel structured AMR applications. Eng Comput 22(3–4): 181–195CrossRefGoogle Scholar
  24. Kim HS (2009) Nonlinear multi-scale anisotropic material and structural models for prosthetic and native aortic heart valves. Georgia Institute of TechnologyGoogle Scholar
  25. Kim H, Chandran KB et al (2007) An experimentally derived stress resultant shell model for heart valve dynamic simulations. Ann Biomed Eng 35(1): 30–44CrossRefGoogle Scholar
  26. Kim H, Lu J et al (2008) Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng 36(2): 262–275CrossRefGoogle Scholar
  27. Krishnamurthy G, Itoh A et al (2009) Stress-strain behavior of mitral valve leaflets in the beating ovine heart. J Biomech 42(12): 1909–1916CrossRefGoogle Scholar
  28. Kunzelman KS, Cochran RP et al (1993) Finite-element analysis of mitral-valve pathology. J Long Term Eff Med Implants 3(3): 161–170Google Scholar
  29. Kunzelman KS, Reimink MS et al (1997) Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc Surg 5(4): 427–434CrossRefGoogle Scholar
  30. Kunzelman KS, Quick DW et al (1998a) Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Ann Thorac Surg 66(6 Suppl): S198–S205CrossRefGoogle Scholar
  31. Kunzelman KS, Reimink MS et al (1998b) Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: a finite element model. J Heart Valve Dis 7(1): 108–116Google Scholar
  32. Lai MC, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity 1. J Comput Phys 160(2): 705–719MathSciNetzbMATHCrossRefGoogle Scholar
  33. Lim KH, Yeo JH et al (2005) Three-dimensional asymmetrical modeling of the mitral valve: a finite element study with dynamic boundaries. J Heart Valve Dis 14(3): 386–392Google Scholar
  34. Liu HF, Luo XY et al (2009) Sensitivity of unsteady collapsible channel flows to modelling assumptions. Commun Numer Methods Eng 25(5): 483–504MathSciNetzbMATHCrossRefGoogle Scholar
  35. Liu HF, Luo XY et al (2011) Stability and Energy budget of pressure-driven collapsible channel flows. J Fluid Mech (in press)Google Scholar
  36. Luo XY, Cai ZX et al (2008) The cascade structure of linear instability in collapsible channel flows. J Fluid Mech 600: 45–76MathSciNetzbMATHCrossRefGoogle Scholar
  37. Maisano F, Redaelli A et al (2005) An annular prosthesis for the treatment of functional mitral regurgitation: Finite element model analysis of a dog bone-shaped ring prosthesis. Ann Thorac Surg 79(4): 1268–1275CrossRefGoogle Scholar
  38. Peskin CS (2002) The immersed boundary method. Acta Numer 11: 479–517MathSciNetzbMATHCrossRefGoogle Scholar
  39. Prot V, Skallerud B (2009) Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers. Comput Mech 43(3): 353–368zbMATHCrossRefGoogle Scholar
  40. Prot V, Skallerud B et al (2007) Transversely isotropic membrane shells with application to mitral valve mechanics. Constitutive modelling and finite element implementation. Int J Numer Methods Eng 71(8): 987–1008MathSciNetzbMATHCrossRefGoogle Scholar
  41. Prot V, Haaverstad R et al (2009) Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution. Biomech Model Mechanobiol 8(1): 43–55CrossRefGoogle Scholar
  42. Prot V, Skallerud B et al (2010) On modelling and analysis of healthy and pathological human mitral valves: two case studies. J Mech Behav Biomed Mater 3(2): 167–177CrossRefGoogle Scholar
  43. Rapaport E (1985) Calculation of valve areas. Eur Heart J 6(suppl C): 21Google Scholar
  44. Reimink MS, Kunzelman KS et al (1996) The effect of chordal replacement suture length on function and stresses in repaired mitral valves: a finite element study. J Heart Valve Di 5(4): 365–375Google Scholar
  45. Sacks MS, Merryman DW et al (2009) On the biomechanics of heart valve function. J Biomech 42(12): 1804–1824CrossRefGoogle Scholar
  46. Skallerud B, Prot V et al (2011) Modeling active muscle contraction in mitral valve leaflets during systole: a first approach. Biomech Model Mechanobiol 10(1): 1–16CrossRefGoogle Scholar
  47. Stevanella M, Votta E et al (2009) Mitral valve finite element modeling: Implications of tissues’ nonlinear response and annular motion. Journal of Biomechanical Engineering 131: 121010CrossRefGoogle Scholar
  48. Urankar SA (2008) Modeling surgical interventions in the mitral valve with the finite element method. University of Pittsburgh, PittsburghGoogle Scholar
  49. Vongpatanasin W, Hillis LD et al (1996) Prosthetic heart valves. N Engl J Med 335(6): 407CrossRefGoogle Scholar
  50. Votta E, Maisano F et al (2007) The Geoform disease-specific annuloplasty system: a finite element study. Ann Thorac Surg 84(1): 92–101CrossRefGoogle Scholar
  51. Votta E, Caiani E et al (2008) Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Phil Trans R Soc A Math Phys Eng Sci 366: 3411–3434CrossRefGoogle Scholar
  52. Watton PN, Luo XY et al (2007) Dynamic modelling of prosthetic chorded mitral valves using the immersed boundary method. J Biomech 40(3): 613–626CrossRefGoogle Scholar
  53. Watton PN, Luo XY et al (2008) Effect of ventricle motion on the dynamic behaviour of chorded mitral valves. J Fluids Struct 24(1): 58–74CrossRefGoogle Scholar
  54. Weinberg E (2005) Dynamic simulation of heart mitral valve with transversely isotropic material model. Massachusetts Institute of TechnologyGoogle Scholar
  55. Weinberg EJ, Kaazempur-Mofrad MR (2007) A finite shell element for heart mitral valve leaflet mechanics, with large deformations and 3D constitutive material model. J Biomech 40(3): 705–711CrossRefGoogle Scholar
  56. Weinberg EJ, Shahmirzadi D et al (2010) On the multiscale modeling of heart valve biomechanics in health and disease. Biomech Model Mechanobiol 9(4): 1–15CrossRefGoogle Scholar
  57. Wenk JF, Zhang Z et al (2010) First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann Thorac Surg 89(5): 1546–1553CrossRefGoogle Scholar
  58. Yin M, Luo XY et al (2010) Effects of flow vortex on a chorded mitral valve in the left ventricle. Int J Numer Methods Biomed Eng 26(3–4): 381–404MathSciNetzbMATHCrossRefGoogle Scholar
  59. Yoganathan AP, He Z et al (2004) Fluid mechanics of heart valves. Annu Rev Biomed Eng 6(1): 331–362CrossRefGoogle Scholar
  60. Yoganathan AP, Chandran KB et al (2005) Flow in prosthetic heart valves: state-of-the-art and future directions. Ann Biomed Eng 33(12): 1689–1694CrossRefGoogle Scholar
  61. Zhang L, Gerstenberger A et al (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193(21–22): 2051–2067MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • X. Y. Luo
    • 1
    Email author
  • B. E. Griffith
    • 2
  • X. S. Ma
    • 1
  • M. Yin
    • 3
  • T. J. Wang
    • 3
  • C. L. Liang
    • 4
  • P. N. Watton
    • 5
  • G. M. Bernacca
    • 6
  1. 1.School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
  2. 2.Leon H. Charney Division of Cardiology, Department of MedicineNew York University School of MedicineNew YorkUSA
  3. 3.Department of Engineering MechanicsXi’an Jiaotong UniversityXi’anChina
  4. 4.Department of Mechanical and Aerospace EngineeringGeorge Washington UniversityWashingtonUSA
  5. 5.Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
  6. 6.Division of Cardiovascular and Medical Sciences, Gardiner InstituteUniversity of GlasgowGlasgowUK

Personalised recommendations