Estimation of aneurysm wall stresses created by treatment with a shape memory polymer foam device

  • Wonjun Hwang
  • Brent L. Volk
  • Farida Akberali
  • Pooja Singhal
  • John C. Criscione
  • Duncan J. Maitland
Original Paper

Abstract

In this study, compliant latex thin-walled aneurysm models are fabricated to investigate the effects of expansion of shape memory polymer foam. A simplified cylindrical model is selected for the in-vitro aneurysm, which is a simplification of a real, saccular aneurysm. The studies are performed by crimping shape memory polymer foams, originally 6 and 8 mm in diameter, and monitoring the resulting deformation when deployed into 4-mm-diameter thin-walled latex tubes. The deformations of the latex tubes are used as inputs to physical, analytical, and computational models to estimate the circumferential stresses. Using the results of the stress analysis in the latex aneurysm model, a computational model of the human aneurysm is developed by changing the geometry and material properties. The model is then used to predict the stresses that would develop in a human aneurysm. The experimental, simulation, and analytical results suggest that shape memory polymer foams have potential of being a safe treatment for intracranial saccular aneurysms. In particular, this work suggests oversized shape memory foams may be used to better fill the entire aneurysm cavity while generating stresses below the aneurysm wall breaking stresses.

Keywords

Aneurysm Shape memory polymer foam Embolic device Aneurysm rupture Latex vascular model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abruzzo T, Shengelaia GG, Dawson RC III, Owens DS, Cawley CM, Gravanis MB (1998) Histologic and morphologic comparison of experimental aneurysms with human intracranial aneurysms. Am J Neuroradiol 19(7): 1309–1314Google Scholar
  2. Ahuja AA, Hergenrother RW, Strother CM, Rappe AA, Cooper SL, Graves VB (1993) Platinum coil coatings to increase thrombogenicity—a preliminary-study in rabbits. Am J Neuroradiol 14(4): 794–798Google Scholar
  3. Akkas N (1990) Aneurysms as a biomechanical instability problem. In: Mosora F (eds) Biomechanical transport processes. Plenum Press, New York, pp 303–311Google Scholar
  4. Appelboom G, Kadri K, Hassan F, Leclerc X (2010) Infectious aneurysm of the cavernous carotid artery in a child treated with a new-generation of flow-diverting stent graft: case report. Neurosurgery 66(3):E623–E624; discussion E624. doi:10.1227/01.NEU.0000365370.82554.08
  5. ASTM Standard D638 (2003) Standard test method for tensile properties of plastics. ASTM International 1–15. doi:10.1520/D0638-10
  6. Austin GM, Schievink W, Williams R (1989) Controlled pressure-volume factors in the enlargement of intracranial aneurysms. Neurosurgery 24(5): 722–730CrossRefGoogle Scholar
  7. Bendszus M, Bartsch AJ, Solymosi L (2007) Endovascular occlusion of aneurysms using a new bioactive coil: a matched pair analysis with bare platinum coils. Stroke 38(10): 2855–2857. doi:10.1161/STROKEAHA.107.489088 CrossRefGoogle Scholar
  8. Biondi A, Janardhan V, Katz JM, Salvaggio K, Riina HA, Gobin YP (2007) Neuroform stent-assisted coil embolization of wide-neck intracranial aneurysms: strategies in stent deployment and midterm follow-up. Neurosurgery 61(3):460–468; discussion 468–469. doi:10.1227/01.NEU.0000290890.62201.A9 Google Scholar
  9. Brilstra EH, Rinkel GJ, van der Graaf Y, van Rooij WJ, Algra A (1999) Treatment of intracranial aneurysms by embolization with coils: a systematic review. Stroke 30(2): 470–476CrossRefGoogle Scholar
  10. Brisman JL, Niimi Y, Song JK, Berenstein A (2005) Aneurysmal rupture during coiling: low incidence and good outcomes at a single large volume center. Neurosurgery 57(6):1103–1109; discussion 1103–1109. doi:00006123-200512000-00005 Google Scholar
  11. Brisman JL, Song JK, Newell DW (2006) Cerebral aneurysms. N Engl J Med 355(9): 928–939. doi:10.1056/NEJMra052760 CrossRefGoogle Scholar
  12. Cabanlit M, Maitland D, Wilson T, Simon S, Wun T, Gershwin ME, Vande Water J (2007) Polyurethane shape-memory polymers demonstrate functional biocompatibility in vitro. Macromol Biosci 7(1): 48–55. doi:10.1002/mabi.200600177 CrossRefGoogle Scholar
  13. Cekirge HS, Saatci I, Ozturk MH, Cil B, Arat A, Mawad M, Ergungor F, Belen D, Er U, Turk S, Bavbek M, Sekerci Z, Beskonakli E, Ozcan OE, Ozgen T (2006) Late angiographic and clinical follow-up results of 100 consecutive aneurysms treated with Onyx reconstruction: largest single-center experience. Neuroradiology 48(2): 113–126. doi:10.1007/s00234-005-0007-6 CrossRefGoogle Scholar
  14. Choudhari KA, Flynn PA, McKinstry SC (2007) Spontaneous extrusion of guglielmi detachable coils from anterior communicating artery aneurysm. Neurol India 55(2): 148–150CrossRefGoogle Scholar
  15. Cloft HJ, Kallmes DF (2002) Cerebral aneurysm perforations complicating therapy with Guglielmi detachable coils: a meta-analysis. Am J Neuroradiol 23(10): 1706–1709Google Scholar
  16. Criscione JC (2003) Rivlin’s representation formula is ill-conceived for the determination of response functions via biaxial testing. J Elasticity 70(1–3): 129–147MathSciNetMATHCrossRefGoogle Scholar
  17. David G, Humphrey JD (2003) Further evidence for the dynamic stability of intracranial saccular aneurysms. J Biomech 36(8): 1143–1150. doi:S0021929003000836 CrossRefGoogle Scholar
  18. Ferguson GG (1972) Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms. J Neurosurg 37(6): 666–677. doi:10.3171/jns.1972.37.6.0666 CrossRefGoogle Scholar
  19. Fiorella D, Albuquerque FC, Woo H, Rasmussen PA, Masaryk TJ, McDougall CG (2006) Neuroform in-stent stenosis: incidence, natural history, and treatment strategies. Neurosurgery 59(1):34–42; discussion 34–42. doi:10.1227/01.NEU.0000219853.56553.71 Google Scholar
  20. Fiorella D, Kelly ME, Albuquerque FC, Nelson PK (2009) Curative reconstruction of a giant midbasilar trunk aneurysm with the pipeline embolization device. Neurosurgery 64(2):212–217; discussion 217. doi:10.1227/01.NEU.0000337576.98984.E4 Google Scholar
  21. Fiorella D, Woo HH, Albuquerque FC, Nelson PK (2008) Definitive reconstruction of circumferential, fusiform intracranial aneurysms with the pipeline embolization device. Neurosurgery 62(5):1115–1120; discussion 1120–1111. doi:10.1227/01.neu.0000325873.44881.6e Google Scholar
  22. Gaba RC, Ansari SA, Roy SS, Marden FA, Viana MA, Malisch TW (2006) Embolization of intracranial aneurysms with hydrogel-coated coils versus inert platinum coils: effects on packing density, coil length and quantity, procedure performance, cost, length of hospital stay, and durability of therapy. Stroke 37(6): 1443–1450. doi:10.1161/01.STR.0000221314.55144.0b CrossRefGoogle Scholar
  23. Geyik S, Ertugrul O, Yavuz K, Geyik P, Saatci I, Cekirge HS (2010) Comparison of bioactive coils and bare platinum coils for treatment of intracranial aneurysms: a matched-pair analysis. J Neurosurg 112(4): 709–713. doi:10.3171/2009.8.JNS081372 CrossRefGoogle Scholar
  24. Gunnarsson T, Tong FC, Klurfan P, Cawley CM, Dion JE (2009) Angiographic and clinical outcomes in 200 consecutive patients with cerebral aneurysm treated with hydrogel-coated coils. Am J Neuroradiol 30(9): 1657–1664. doi:10.3174/ajnr.A1691 CrossRefGoogle Scholar
  25. Heistand MR, Pedrigi RM, Delange SL, Dziezyc J, Humphrey JD (2005) Multiaxial mechanical behavior of the porcine anterior lens capsule. Biomech Model Mechanobiol 4(2–3): 168–177. doi:10.1007/s10237-005-0073-z CrossRefGoogle Scholar
  26. Henkes H, Fischer S, Weber W, Miloslavski E, Felber S, Brew S, Kuehne D (2004) Endovascular coil occlusion of 1811 intracranial aneurysms: early angiographic and clinical results. Neurosurgery 54(2):268–280; discussion 280–265Google Scholar
  27. Hirsch JA, Bendok BR, Paulsen RD, Cognard C, Campos J, Cronqvist M (2007) Midterm clinical experience with a complex-shaped detachable platinum coil system for the treatment of cerebral aneurysms: Trufill DCS Orbit detachable coil system registry interim results. J Vasc Interv Radiol 18(12): 1487–1494. doi:10.1016/j.jvir.2007.07.020 CrossRefGoogle Scholar
  28. Horowitz M, Samson D, Purdy P (1997) Does electrothrombosis occur immediately after embolization of an aneurysm with Guglielmi detachable coils?. Am J Neuroradiol 18(3): 510–513Google Scholar
  29. Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New YorkGoogle Scholar
  30. Humphrey JD, Na S (2002) Elastodynamics and arterial wall stress. Ann Biomed Eng 30(4): 509–523. doi:10.1114/1.1467676 CrossRefGoogle Scholar
  31. Hung EJ, Botwin MR (1975) Mechanics of rupture of cerebral saccular aneurysms. J Biomech 8(6): 385–392CrossRefGoogle Scholar
  32. Ionita CN, Paciorek AM, Dohatcu A, Hoffmann KR, Bednarek DR, Kolega J, Levy EI, Hopkins LN, Rudin S, Mocco JD (2009) The asymmetric vascular stent: efficacy in a rabbit aneurysm model. Stroke 40(3): 959–965. doi:10.1161/STROKEAHA.108.524124 CrossRefGoogle Scholar
  33. Ionita CN, Paciorek AM, Hoffmann KR, Bednarek DR, Yamamoto J, Kolega J, Levy EI, Hopkins LN, Rudin S, Mocco J (2008) Asymmetric vascular stent: feasibility study of a new low-porosity patch-containing stent. Stroke 39(7): 2105–2113. doi:10.1161/STROKEAHA.107.503862 CrossRefGoogle Scholar
  34. Kallmes DF, Borland MK, Cloft HJ, Altes TA, Dion JE, Jensen ME, Hankins GR, Helm GA (1998) In vitro proliferation and adhesion of basic fibroblast growth factor-producing fibroblasts on platinum coils. Radiology 206(1): 237–243Google Scholar
  35. Kallmes DF, Ding YH, Dai D, Kadirvel R, Lewis DA, Cloft HJ (2007) A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke 38(8): 2346–2352. doi:10.1161/STROKEAHA.106.479576 CrossRefGoogle Scholar
  36. Kallmes DF, Williams D, Cloft HJ, Lopes MBS, Hankins GR, Helm GA (1998) Platinum coil-mediated implantation of growth factor-secreting endovascular tissue grafts: an in vivo study. Radiology 207(2): 519–523Google Scholar
  37. Kyriacou SK, Humphrey JD (1996) Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms. J Biomech 29(8): 1015–1022. doi:0021929096000103 CrossRefGoogle Scholar
  38. Lai WM, Rubin David, Krempl Erhard (1993) Introduction to continuum mechanics. 3rd edn. Butterworth-Heinemann, WoburnGoogle Scholar
  39. Leonardi M, Dall’olio M, Princiotta C, Simonetti L (2008) Treatment of carotid siphon aneurysms with a microcell stent. A case report. Interv Neuroradiol 14(4): 429–434. doi:IN.v14.i4.p429 Google Scholar
  40. Liang G, Gao X, Li Z, Wei X, Xue H (2010) Neuroform stent-assisted coiling of intracranial aneurysms: a 5 year single-center experience and follow-up. Neurol Res 32(7): 721–727. doi:10.1179/016164109X12445616596409 CrossRefGoogle Scholar
  41. Lubicz B, Bandeira A, Bruneau M, Dewindt A, Baleriaux D, De Witte O (2009) Stenting is improving and stabilizing anatomical results of coiled intracranial aneurysms. Neuroradiology 51(6): 419–425. doi:10.1007/s00234-009-0519-6 CrossRefGoogle Scholar
  42. Lylyk P, Miranda C, Ceratto R, Ferrario A, Scrivano E, Luna HR, Berez AL, Tran Q, Nelson PK, Fiorella D (2009) Curative endovascular reconstruction of cerebral aneurysms with the pipeline embolization device: the Buenos Aires experience. Neurosurgery 64(4):632–642; discussion 642–633; quiz N636. doi:10.1227/01.NEU.0000339109.98070.65 Google Scholar
  43. MacDonald DJ, Finlay HM, Canham PB (2000) Directional wall strength in saccular brain aneurysms from polarized light microscopy. Ann Biomed Eng 28(5): 533–542CrossRefGoogle Scholar
  44. Maitland DJ, Small W IV, Ortega JM, Buckley PR, Rodriguez J, Hartman J, Wilson TS (2007) Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms. J Biomed Opt 12(3): 030504. doi:10.1117/1.2743983 CrossRefGoogle Scholar
  45. Maitland DJ, Small W IV, Singhal P, Hwang W, Rodriguez JN, Clubb F, Wilson TS (2009) Design and realization of biomedical devices based on shape memory polymers. Mater Res Soc 1190(NN06): 1–13Google Scholar
  46. Molyneux AJ, Cekirge S, Saatci I, Gal G (2004) Cerebral aneurysm multicenter european onyx (CAMEO) trial: results of a prospective observational study in 20 European centers. Am J Neuroradiol 25(1): 39–51Google Scholar
  47. Murayama Y, Nien YL, Duckwiler G, Gobin YP, Jahan R, Frazee J, Martin N, Vinuela F (2003) Guglielmi detachable coil embolization of cerebral aneurysms: 11 years’ experience. J Neurosurg 98(5): 959–966. doi:10.3171/jns.2003.98.5.0959 CrossRefGoogle Scholar
  48. Murayama Y, Vinuela F, Suzuki Y, Akiba Y, Ulihoa A, Duckwiler GR, Gobin YP, Vinters HV, Iwaki M, Abe T (1999) Development of the biologically active Guglielmi detachable coil for the treatment of cerebral aneurysms. Part II: an experimental study in a swine aneurysm model. Am J Neuroradiol 20(10): 1992–1999Google Scholar
  49. Murayama Y, Vinuela F, Tateshima S (2002) Matrix: new bio-absorbable polymeric coils for the treatment of intracranial aneurysms. Int Congr Ser 1247: 119–126. doi:S0531-5131(02)01039-7 CrossRefGoogle Scholar
  50. Neves-Junior WFP, Ferreira M, Alves MCO, Graeff CFO, Mulato M, Coutinho-Netto J, Bernardes MS (2006) Influence of fabrication process on the final properties of natural-rubber latex tubes for vascular prosthesis. Braz J Phys 36(2B): 586–591CrossRefGoogle Scholar
  51. Ortega J, Maitland D, Wilson T, Tsai W, Savas O, Saloner D (2007) Vascular dynamics of a shape memory polymer foam aneurysm treatment technique. Ann Biomed Eng 35(11): 1870–1884. doi:10.1007/s10439-007-9358-y CrossRefGoogle Scholar
  52. Piske RL, Kanashiro LH, Paschoal E, Agner C, Lima SS, Aguiar PH (2009) Evaluation of Onyx HD-500 embolic system in the treatment of 84 wide-neck intracranial aneurysms. Neurosurgery 64(5):E865–E875; discussion E875. doi:10.1227/01.NEU.0000340977.68347.51 Google Scholar
  53. Schievink WI (1997) Intracranial aneurysms. N Engl J Med 336(1): 28–40. doi:10.1056/NEJM199701023360106 CrossRefGoogle Scholar
  54. Scott S, Ferguson GG, Roach MR (1972) Comparison of the elastic properties of human intracranial arteries and aneurysms. Can J Physiol Pharmacol 50(4): 328–332CrossRefGoogle Scholar
  55. Shah AD, Humphrey JD (1999) Finite strain elastodynamics of intracranial saccular aneurysms. J Biomech 32(6): 593–599. doi:S0021-9290(99)00030-5 CrossRefGoogle Scholar
  56. Simkins TE, Stehbens WE (1973) Vibrational behavior of arterial aneurysms. Lett Appl Eng Sci 1: 85–100Google Scholar
  57. Small W, Buckley PR, Wilson TS, Benett WJ, Hartman J, Saloner D, Maitland DJ (2007) Shape memory polymer stent with expandable foam: a new concept for endovascular embolization of fusiform aneurysms. IEEE Trans Biomed Eng 54(6 Pt 2): 1157–1160. doi:10.1109/TBME.2006.889771 CrossRefGoogle Scholar
  58. Stehbens WE (1990) Pathology and pathogenesis of intracranial berry aneurysms. Neurol Res 12(1): 29–34Google Scholar
  59. Steiger HJ, Aaslid R, Keller S, Reulen HJ (1989) Strength, elasticity and viscoelastic properties of cerebral aneurysms. Heart Vessel 5(1): 41–46CrossRefGoogle Scholar
  60. Suzuki J, Ohara H (1978) Clinicopathological study of cerebral aneurysms. Origin, rupture, repair, and growth. J Neurosurg 48(4): 505–514. doi:10.3171/jns.1978.48.4.0505 CrossRefGoogle Scholar
  61. Szikora I, Berentei Z, Kulcsar Z, Marosfoi M, Vajda ZS, Lee W, Berez A, Nelson PK (2010) Treatment of intracranial aneurysms by functional reconstruction of the parent artery: the Budapest experience with the pipeline embolization device. Am J Neuroradiol 31(6): 1139–1147. doi:10.3174/ajnr.A2023 CrossRefGoogle Scholar
  62. Tamatani S, Ozawa T, Minakawa T, Takeuchi S, Koike T, Tanaka R (1997) Histological interaction of cultured endothelial cells and endovascular embolic materials coated with extracellular matrix. J Neurosurg 86(1): 109–112. doi:10.3171/jns.1997.86.1.0109 CrossRefGoogle Scholar
  63. Tummala RP, Chu RM, Madison MT, Myers M, Tubman D, Nussbaum ES (2001) Outcomes after aneurysm rupture during endovascular coil embolization. Neurosurgery 49(5):1059–1066; discussion 1066–1057Google Scholar
  64. Veznedaroglu E, Koebbe CJ, Siddiqui A, Rosenwasser RH (2008) Initial experience with bioactive cerecyte detachable coils: impact on reducing recurrence rates. Neurosurgery 62(4):799–805; discussion 805–796. doi:10.1227/01.neu.0000318163.44601.c7 Google Scholar
  65. Wakhloo AK, Gounis MJ, Sandhu JS, Akkawi N, Schenck AE, Linfante I (2007) Complex-shaped platinum coils for brain aneurysms: higher packing density, improved biomechanical stability, and midterm angiographic outcome. Am J Neuroradiol 28(7): 1395–1400. doi:10.3174/ajnr.A0542 CrossRefGoogle Scholar
  66. Wijdicks EF, Kallmes DF, Manno EM, Fulgham JR, Piepgras DG (2005) Subarachnoid hemorrhage: neurointensive care and aneurysm repair. Mayo Clin Proc 80(4): 550–559CrossRefGoogle Scholar
  67. Willinsky RA (1999) Detachable coils to treat intracranial aneurysms. CMAJ 161(9): 1136Google Scholar
  68. Wilson TS, Bearinger JP, Herberg JL, Marion JE, Wright WJ, Evans CL, Maitland DJ (2007) Shape memory polymers based on uniform aliphatic urethane networks. J Appl Polym Sci 106(1): 540–551CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Wonjun Hwang
    • 1
  • Brent L. Volk
    • 1
    • 2
  • Farida Akberali
    • 1
  • Pooja Singhal
    • 1
    • 3
  • John C. Criscione
    • 1
  • Duncan J. Maitland
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Materials Science and Engineering ProgramTexas A&M UniversityCollege StationUSA
  3. 3.Chemical Sciences DivisionPhysical and Life Sciences, Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations