Advertisement

Anisotropic microsphere-based approach to damage in soft fibered tissue

  • P. SáezEmail author
  • V. Alastrué
  • E. Peña
  • M. Doblaré
  • M. A. Martínez
Original Paper

Abstract

An anisotropic damage model for soft fibered tissue is presented in this paper, using a multi-scale scheme and focusing on the directionally dependent behavior of these materials. For this purpose, a micro-structural or, more precisely, a microsphere-based approach is used to model the contribution of the fibers. The link between micro-structural contribution and macroscopic response is achieved by means of computational homogenization, involving numerical integration over the surface of the unit sphere. In order to deal with the distribution of the fibrils within the fiber, a von Mises probability function is incorporated, and the mechanical (phenomenological) behavior of the fibrils is defined by an exponential-type model. We will restrict ourselves to affine deformations of the network, neglecting any cross-link between fibrils and sliding between fibers and the surrounding ground matrix. Damage in the fiber bundles is introduced through a thermodynamic formulation, which is directly included in the hyperelastic model. When the fibers are stretched far from their natural state, they become damaged. The damage increases gradually due to the progressive failure of the fibrils that make up such a structure. This model has been implemented in a finite element code, and different boundary value problems are solved and discussed herein in order to test the model features. Finally, a clinical application with the material behavior obtained from actual experimental data is also presented.

Keywords

Soft tissue Microsphere Affine deformations Damage Blood vessels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

ESM 1 (MPG 1722 kb)

ESM 2 (MPG 1396 kb)

ESM 3 (MPG 1620 kb)

References

  1. Alastrué V, Peña E, Martinez MA, Doblare M (2007a) Assessing the use of the “opening angle method” to enforce residual stresses in patient-specific arteries. Ann Biomed Eng 35(10): 1821–1837CrossRefGoogle Scholar
  2. Alastrué V, Rodriguez J, Calvo B, Doblare M (2007b) Structural damage models for fibrous biological soft tissues. Int J Solids Struct 44(18–19): 5894–5911zbMATHCrossRefGoogle Scholar
  3. Alastrué V, Martinez MA, Doblare M, Menzel A (2009a) Anisotropic micro-sphere-based finite elasticity applied to blood vessel modelling. J Mech Phys Solids 57(1): 178–203zbMATHCrossRefGoogle Scholar
  4. Alastrué V, Martinez MA, Menzel A, Doblare M (2009b) On the use of non-linear transformations for the evaluation of anisotropic rotationally symmetric directional integrals. Application to the stress analysis in fibred soft tissues. Intl J Numer Meth Eng 79(4): 474–504zbMATHCrossRefGoogle Scholar
  5. Alastrue V, Saez P, Martinez MA, Doblare M (2010) On the use of the bingham statistical distribution in microsphere-based constitutive models for arterial tissue. Mech Res Commun 37(8): 700–706CrossRefGoogle Scholar
  6. Ateshian GA (2007) On the theory of reactive mixtures for modeling biological growth. Biomech Model Mech 6(6): 423–445CrossRefGoogle Scholar
  7. Balzani D, Schroder J, Gross D (2006) Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomater 2(6): 609–618CrossRefGoogle Scholar
  8. Bažant P, Oh BH (1986) Efficient numerical integration on the surface of a sphere. ZAMM-Z Angew Math Comput Mech 66(1): 37–49zbMATHCrossRefGoogle Scholar
  9. Boehler JP (1987) Applications of tensor functions in solid mechanics. CISM courses and lectures. Springer, BerlinGoogle Scholar
  10. Buehler MJ (2008) Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J Mech Behav Biomed Mater 1(1): 59–67CrossRefGoogle Scholar
  11. Calvo B, Peña E, Martinez MA, Doblaré M (2007) An uncoupled directional damage model for fibred biological soft tissues. Formulation and computational aspects. Int J Numer Meth Eng 69(10): 2036–2057zbMATHCrossRefGoogle Scholar
  12. Caner FC, Carol I (2006) Microplane constitutive model and computational framework for blood vessel tissue. J Biomech Eng 128(3): 419–427CrossRefGoogle Scholar
  13. Carew TE, Vaishnav RN, Patel DJ (1968) Compressibility of the arterial wall. Circ Res 23(1): 61–68Google Scholar
  14. Chuong CJ, Fung YC (1984) Compressibility and constitutive equation of arterial wall in radial compression experiments. J Biomech 17(1): 35–40CrossRefGoogle Scholar
  15. Dal H, Kaliske M (2009) A micro-continuum-mechanical material model for failure of rubber-like materials: application to ageing-induced fracturing. J Mech Phys Solids 57(8): 1340–1356zbMATHCrossRefGoogle Scholar
  16. Demiray H, Weizsacker HW, Pascale K, Erbay H (1988) A stress-strain relation for a rat abdominal aorta. J Biomech 21(5): 369–374CrossRefGoogle Scholar
  17. Ehret AE, Itskov M (2009) Modeling of anisotropic softening phenomena: application to soft biological tissues. Int J Plasticity 25(5): 901–919zbMATHCrossRefGoogle Scholar
  18. Ehret AE, Itskov M, Schmid H (2010) Numerical integration on the sphere and its effect on the material symmetry of constitutive equations—a comparative study. Intl J Numer Meth Eng 81(2): 189–206zbMATHGoogle Scholar
  19. Flory PJ (1961) Thermodynamic relations for high elastic materials. T Faraday Soc 57: 829–838MathSciNetCrossRefGoogle Scholar
  20. Fung YC (1990) Biomechanics: mechanical properties of living tissues. Springer, BerlinzbMATHGoogle Scholar
  21. Gasser TC, Holzapfel GA (2007) Finite element modeling of balloon angioplasty by considering overstretch of remnant non-diseased tissues in lesions. Comput Mech 40(1): 47–60zbMATHCrossRefGoogle Scholar
  22. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J Roy Soc Interface 3: 15–35CrossRefGoogle Scholar
  23. Göktepe S, Miehe C (2005) A micro-macro approach to rubber-like materials. Part iii: the micro-sphere model of anisotropic mullins-type damage. J Mech Phys Solids 53(10): 2259–2283MathSciNetzbMATHCrossRefGoogle Scholar
  24. Hardin RH, Sloane NJA (1996) Mclaren’s improved snub cube and other new spherical designs in three dimensions. Discrete Comput Biol Med Geom 15(4): 429–441MathSciNetzbMATHCrossRefGoogle Scholar
  25. Head DA, Levine AJ, MacKintosh FC (2003) Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys Rev E 68(6): 061907CrossRefGoogle Scholar
  26. Heo S, Xu Y (2001) Constructing fully symmetric cubature formulae for the sphere. Math Comput 70: 269–279MathSciNetzbMATHGoogle Scholar
  27. Himpel G, Menzel A, Kuhl E, Steinmann P (2008) Time-dependent fibre reorientation of transversely isotropic continua. Finite element formulation and consistent linearization. Intl J Numer Meth Eng 73(10): 1413–1433MathSciNetzbMATHCrossRefGoogle Scholar
  28. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, LondonzbMATHGoogle Scholar
  29. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1): 1–48MathSciNetzbMATHCrossRefGoogle Scholar
  30. Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289(5): H2048–H2058CrossRefGoogle Scholar
  31. Humphrey JD (1995) Mechanics of the arterial wall: review and directions. Crit Rev Bio Eng 23(1–2): 1–162Google Scholar
  32. Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12(3): 407–430MathSciNetzbMATHCrossRefGoogle Scholar
  33. Kuhl E, Askes H, Steinmann P (2006) An illustration of the equivalence of the loss of ellipticity conditions in spatial and material settings of hyperelasticity. Eur J Mech A Solids 25(2): 199–214MathSciNetzbMATHCrossRefGoogle Scholar
  34. Kuhl E, Garikipati K, Arruda EM, Grosh K (2005) Remodeling of biological tissue: mechanically induced reorientation of a transversely isotropic chain network. J Mech Phys Solids 53(7): 1552–1573MathSciNetzbMATHCrossRefGoogle Scholar
  35. Kuhl E, Holzapfel G (2007) A continuum model for remodeling in living structures. J Mater Sci 42(21): 8811–8823CrossRefGoogle Scholar
  36. Kuhl E, Ramm E (1999) Simulation of strain localization with gradient enhanced damage models. Comput Mater Sci 16(1–4): 176–185CrossRefGoogle Scholar
  37. Landuyt M (2006) Structural quantification of collagen fibers in abdominal aortic aneurysms. Master’s thesis, Royal Institute of Technology in Stockholm, Department of Solid Mechanics and Ghent University, Department of Civil EngineeringGoogle Scholar
  38. Marsden JE, Hughes TJR (1994) Mathematical foundations of elasticity. Dover, New YorkGoogle Scholar
  39. Menzel A, Harrysson M, Ristinmaa M (2008) Towards an orientation-distribution-based multi-scale approach for remodelling biological tissues. Comput Meth Biomech Biomed Eng 11(5): 505–524CrossRefGoogle Scholar
  40. Menzel A, Steinmann P (2003) A view on anisotropic finite hyper-elasticity. Eur J Mech A Solids 22(1): 71–87MathSciNetzbMATHCrossRefGoogle Scholar
  41. Menzel A, Waffenschmidt T (2009) A microsphere-based remodelling formulation for anisotropic biological tissues. Phil Trans R Soc A 367(1902): 3499–3523MathSciNetzbMATHCrossRefGoogle Scholar
  42. Miehe C (1995) Discontinuous and continuous damage evolution in ogden-type large-strain elastic-materials. Eur J Mech A Solids 14(5): 697–720zbMATHGoogle Scholar
  43. Miehe C, Göktepe S (2005) A micro-macro approach to rubber-like materials. Part ii: the micro-sphere model of finite rubber viscoelasticity. J Mech Phys Solids 53(10): 2231–2258MathSciNetzbMATHCrossRefGoogle Scholar
  44. Miehe C, Göktepe S, Lulei F (2004) A micro-macro approach to rubber-like materials—part i: the non-affine micro-sphere model of rubber elasticity. J Mech Phys Solids 52(11): 2617–2660MathSciNetzbMATHCrossRefGoogle Scholar
  45. Natali AN, Pavan PG, Carniel EL, Lucisano ME, Taglialavoro G (2005) Anisotropic elasto-damage constitutive model for the biomechanical analysis of tendons. Med Eng Phys 27(3): 209–214CrossRefGoogle Scholar
  46. Oktay H (1994) Continuum damage mechanics of ballon angioplasty. In Internal Report. UMIGoogle Scholar
  47. Peña E (2011) A rate dependent directional damage model for fibred materials. Application to soft biological tissues. Comput Mech, page Accepted. doi: 10.1007/s00466-011-0594-5
  48. Peña E, Alastrue V, Laborda A, Martinez MA, Doblare M (2010) A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour. J Biomech 43(5): 984–989CrossRefGoogle Scholar
  49. Peña E, Doblaré M (2009) An anisotropic pseudo-elastic approach for modelling mullins effect in fibrous biological materials. Mech Res Commun 36(7): 784–790zbMATHCrossRefGoogle Scholar
  50. Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38(44–45): 7723–7746zbMATHCrossRefGoogle Scholar
  51. Pijaudier-Cabot G, Bazant ZP (1987) Nonlocal damage theory. J Eng Mech 113(10): 1512–1533CrossRefGoogle Scholar
  52. Rhodin JAG (1980) Handbook of Physiology, The Cardiovascular System, volume 2, chapter Architecture of the vessel wall, pp 1–31. American Physiological Society, Bethesda, MarylandGoogle Scholar
  53. Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Method Appl M 60(2): 153–173zbMATHCrossRefGoogle Scholar
  54. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, BerlinzbMATHGoogle Scholar
  55. Souza Neto EAD, Peric D, Owen DRJ (1998) Continuum modelling and numerical simulation of material damage at finite strains. Arch Comput Meth Eng 5(4): 311–384CrossRefGoogle Scholar
  56. Spencer AJM (1971) Theory of invariants. In: Eringen AC (ed) Continuum physiscs. Academic Press, New York, pp 239–253Google Scholar
  57. Steinmann P (1999) Formulation and computation of geometrically non-linear gradient damage. Intl J Numer Meth Eng 46(5): 757–779MathSciNetzbMATHCrossRefGoogle Scholar
  58. Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng-T ASME 120(3): 348–354CrossRefGoogle Scholar
  59. Tang Y, Ballarini R, Buehler MJ, Eppell SJ (2010) Deformation micromechanisms of collagen fibrils under uniaxial tension. J R Soc Interface 7(46): 839–850CrossRefGoogle Scholar
  60. Truesdell C, Noll W (2004) The non-linear field theories of mechanics, 3rd edn. Springer, BerlinGoogle Scholar
  61. Weisstein EW (2004) Erfi. From MathWorld—a wolfram web resource. http://mathworld.wolfram.com/Erfi.html

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • P. Sáez
    • 1
    • 2
    Email author
  • V. Alastrué
    • 3
  • E. Peña
    • 1
    • 2
  • M. Doblaré
    • 1
    • 2
  • M. A. Martínez
    • 1
    • 2
  1. 1.Group of Structural Mechanics and Materials Modeling, Aragón Institute of Engineering ResearchUniversity of ZaragozaZaragozaSpain
  2. 2.CIBER-BBN, Centro de Investigación Biomédica en Red en BioingenieríaBiomateriales y NanomedicinaZaragozaSpain
  3. 3.EBERS Medical Technology SLZaragozaSpain

Personalised recommendations