Hypo-elastic model for lung parenchyma

Original Paper

Abstract

A simple, isotropic, elastic constitutive model for the spongy tissue in lung is formulated from the theory of hypo-elasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted in the literature as indicating extensional anisotropy. In contrast, we show that this behavior arises naturally from an analysis of isotropic hypo-elastic invariants and is a result of non-linearity, not anisotropy. The response of the model is determined analytically for several boundary value problems used for material characterization. These responses give insight into both the material behavior as well as admissible bounds on parameters. The model predictions are compared with published experimental data for dog lung.

Keywords

Biomechanics Elastic moduli Finite deformation Soft solids Thermodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almansi E (1911) Sulle deformazioni finite dei solidi elastici isotropi. Rendiconti della Reale Accademia dei Lincei: Classe di scienze fisiche, matematiche e naturali 20: 705–714MATHGoogle Scholar
  2. Bernstein B (1960) Hypo-elasticity and elasticity. Arch Ration Mech Anal 6: 90–104Google Scholar
  3. Bernstein B, Rajagopal KR (2008) Thermodynamics of hypoelasticity. Zeitschrift für angewandte Mathematik und Physik 59: 537–553MathSciNetMATHCrossRefGoogle Scholar
  4. Budiansky B, Kimmel E (1987) Elastic moduli of lungs. J Appl Mech 54: 351–358MATHCrossRefGoogle Scholar
  5. Cauchy AL (1827) Exercices de Mathématiques, vol 2. de Bure Frères, ParisGoogle Scholar
  6. Dale PJ, Matthews FL, Schroter RC (1980) Finite element analysis of lung alveolus. J Biomech 13: 865–873CrossRefGoogle Scholar
  7. Denny E, Schroter RC (1995) The mechanical behavior of a mammalian lung alveolar duct model. J Biomech Eng 117: 254–261CrossRefGoogle Scholar
  8. Denny E, Schroter RC (2006) A model of non-uniform lung parenchyma distortion. J Biomech 39: 652–663CrossRefGoogle Scholar
  9. Faffe DS, Zin WA (2009) Lung parenchymal mechanics in health and disease. Physiol Rev 89: 759–775CrossRefGoogle Scholar
  10. Frankus A, Lee GC (1974) A theory for distortion studies of lung parenchyma based on alveolar membrane properties. J Biomech 7: 101–107CrossRefGoogle Scholar
  11. Fredberg JJ, Kamm RD (2006) Stress transmission in the lung: pathways from organ to molecule. Annu Rev Physiol 68: 507–541CrossRefGoogle Scholar
  12. Freed AD (2008) Anisotropy in hypoelastic soft-tissue mechanics, I: theory. J Mech Mater Struct 3(5): 911–928MathSciNetCrossRefGoogle Scholar
  13. Freed AD (2009) Anisotropy in hypoelastic soft-tissue mechanics, II: simple extensional experiments. J Mech Mater Struct 4(6): 1005–1025CrossRefGoogle Scholar
  14. Freed AD (2010) Hypoelastic soft tissues part I: theory. Acta Mech 213: 189–204. doi:10.1007/s00707-009-0276-y MATHCrossRefGoogle Scholar
  15. Freed AD, Einstein DR, Sacks MS (2010) Hypoelastic soft tissues, part II: in-plane biaxial experiments. Acta Mech 213: 205–222. doi:10.1007/s00707-010-0357-y MATHCrossRefGoogle Scholar
  16. Fung YC (1967) Elasticity of soft tissues in simple elongation. Am J Physiol 28: 1532–1544Google Scholar
  17. Fung YC (1975) Stress, deformation, and atelectasis of the lung. Circ Res 37: 481–496Google Scholar
  18. Fung YC (1988) A model of the lung structure and its validation. J Appl Physiol 64: 2132–2141Google Scholar
  19. Fung YC (1990) Biomechanics: motion flow stress and growth. Springer, New YorkMATHGoogle Scholar
  20. Fung YC (1996) Biomechanics: circulation, 2nd edn. Springer, New YorkGoogle Scholar
  21. Green G (1841) On the propagation of light in crystallized media. Trans Camb Philos Soc 7: 121–140Google Scholar
  22. Greenshields CJ, Weller HG (2005) A unified formulation for continuum mechanics applied to fluid-structure interaction in flexible tubes. Int J Numer Methods Eng 64: 1575–1593MathSciNetMATHCrossRefGoogle Scholar
  23. Gurtin ME, Spear K (1983) On the relationship between the logarithmic strain rate and the stretching tensor. Int J Solids Struct 19: 437–444MathSciNetMATHCrossRefGoogle Scholar
  24. Hajji MA (1978) Indentation of a membrane on an elastic half space. J Appl Mech 45: 320–324CrossRefGoogle Scholar
  25. Hencky H (1928) über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Zeitschrift für technische Physik 9: 215–220Google Scholar
  26. Hildebrandt J (1970) Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J Appl Physiol 28(3): 365–372Google Scholar
  27. Hill R (1957) On uniqueness and stability in the theory of finite elastic strain. J Mech Phys Solids 5: 229–241MathSciNetMATHCrossRefGoogle Scholar
  28. Hill R (1958) A general theory of uniqueness and stability in elastic-plastic solids. J Mech Phys Solids 6: 236–249MATHCrossRefGoogle Scholar
  29. Hoger A (1986) The material time derivative of logarithmic strain. Int J Solids Struct 22: 1019–1032MathSciNetMATHCrossRefGoogle Scholar
  30. Hoger A (1987) The stress conjugate to logarithmic strain. Int J Solids Struct 23: 1645–1656MathSciNetMATHCrossRefGoogle Scholar
  31. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, ChichesterMATHGoogle Scholar
  32. Hoppin FG Jr, Hildebrandt J (1977) Mechanical properties of the lung. In: West JB (eds) Bioengineering aspects of the lung, lung biology in health and disease, vol 3. Marcel Dekker, New York, pp 83–162Google Scholar
  33. Jaumann G (1911) Geschlossenes System physikalischer und chemischer Differentialgesetze. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften: Mathematisch-naturwissenschaftliche Klasse 120: 385–530MATHGoogle Scholar
  34. Karakaplan AD, Bieniek MP, Skalak R (1980) A mathematical model of lung parenchyma. J Biomech Eng 102: 124–136CrossRefGoogle Scholar
  35. Kimmel E, Budiansky B (1990) Surface tension and the dodecahedron model for lung elasticity. J Biomech Eng 112: 160–167CrossRefGoogle Scholar
  36. Kimmel E, Kamm RD, Shapiro AH (1987) A cellular model of lung elasticity. J Biomech Eng 109: 126–131CrossRefGoogle Scholar
  37. Kirchhoff G (1852) über die Gleichungen des Gleichgewichtes eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Theile. Sitzungsberichte der Akademie der Wissenschaften, Wien 9: 763–773Google Scholar
  38. Kowe R, Schroter RC, Matthews FL, Hitchings D (1986) Analysis of elastic and surface tension effects in the lung alveolus using finite element methods. J Biomech 19(7): 541–549CrossRefGoogle Scholar
  39. Lai-Fook SJ, Wilson TA, Hyatt RE, Rodarte JR (1976) Elastic constants of inflated lobes of dog lungs. J Appl Physiol 40(4): 508–513Google Scholar
  40. Lee GC, Frankus A (1975) Elasticity properties of lung parenchyma derived from experimental distortion data. Biophys J 15: 481–493CrossRefGoogle Scholar
  41. Leonov A (2000) On the conditions of potentiality in finite elasticity and hypo-elasticity. Int J Solids Struct 37: 2565–2576MATHCrossRefGoogle Scholar
  42. Lodge AS (1964) Elastic liquids: an introductory vector treatment of finite-strain polymer rheology. Academic Press, LondonGoogle Scholar
  43. Lodge AS (1974) Body tensor fields in continuum mechanics: with applications to polymer rheology. Academic Press, New YorkGoogle Scholar
  44. Mead J (1973) Respiration: pulmonary mechanics. Annu Rev Physiol 35: 169–192CrossRefGoogle Scholar
  45. Mooney M (1940) A theory of large elastic deformations. J Appl Phys 11: 582–592MATHCrossRefGoogle Scholar
  46. Nadeau JC, Ferrari M (1998) Invariant tensor-to-matrix mappings for evaluation of tensorial expressions. J Elast 52: 43–61MathSciNetMATHCrossRefGoogle Scholar
  47. Noll W (1955) On the continuity of the solid and fluid states. J Ration Mech Anal 4: 3–81MathSciNetMATHGoogle Scholar
  48. Oldroyd JG (1950) On the formulation of rheological equations of state. Proc R Soc Lond A 200: 523–541MathSciNetMATHCrossRefGoogle Scholar
  49. Oldroyd JG (1970) Equations of state of continuous matter in general relativity. Proc R Soc Lond A 316: 1–28MathSciNetCrossRefGoogle Scholar
  50. Otis AB (1972) Man’s urge to model. Bulletin de Physio-Pathologie Respiratoire 8: 181–198Google Scholar
  51. Otis AB (1983) A perspective of respiratory mechanics. J Appl Physiol: Respir Environ Exerc Physiol 54(5): 1183–1187Google Scholar
  52. Otis DR Jr, Ingenito EP, Kamm RD, Johnson M (1994) Dynamic surface tension of surfactant TA: experiments and theory. J Appl Physiol 77(6): 2681–2688Google Scholar
  53. Piola G (1833) La meccanica dé corpi naturalmente estesi: Trattata col calcolo delle variazioni. Opuscoli Matematici e Fisici di Diversi Autori 1: 201–236Google Scholar
  54. Polyanin AD, Zaitsev VF (2003) Handbook of exact solutions for ordinary differential equations, 2nd edn. Chapman & Hall/CRC, Boca RatonMATHGoogle Scholar
  55. Radford EP Jr (1957) Recent studies of mechanical properties of mammalian lungs. In: Remington JW (eds) Tissue elasticity, American physiological society. Waverly Press, Baltimore, pp 177–190Google Scholar
  56. Rajagopal KR, Srinivasa AR (2007) On the response of non-dissipative solids. Proc R Soc Lond A 463: 357–367MathSciNetMATHCrossRefGoogle Scholar
  57. Rajagopal KR, Srinivasa AR (2009) On a class of non-dissipative materials that are not hyperelastic. Proc R Soc Lond A 465: 493–500MathSciNetMATHCrossRefGoogle Scholar
  58. Rivlin RS, Saunders DW (1951) Large elastic deformations of isotropic materials vii. experiments on the deformation of rubber. Philos Trans R Soc Lond A 243: 251–288MATHCrossRefGoogle Scholar
  59. Salerno FG, Ludwig MS (1999) Elastic moduli of excised constricted rat lungs. J Appl Physiol 86: 66–70Google Scholar
  60. Signorini A (1977) Sulle deformazioni thermoelastiche finite. In: Oseen CW, Weibull W (eds) Proceedings of the 3rd international congress for applied mechanics, vol 2. Ab. Sveriges Litografiska Tryckerier, Stockholm, pp 80–89Google Scholar
  61. Simo JC, Hughes TJR (1998) Computational inelasticity, interdisciplinary applied mathematics vol 7. Springer, New YorkGoogle Scholar
  62. Sokolnikoff IS (1964) Tensor analysis: theory and applications to geometry and mechanics of continua, Applied Mathematics Series, 2nd edn. Wiley, New YorkGoogle Scholar
  63. Spencer AJM (1972) Deformations in fibre-reinforced materials, Oxford science research papers. Clarendon Press, OxfordGoogle Scholar
  64. Stamenović D (1990) Micromechanical foundations of pulmonary elasticity. Physiol Rev 70(4): 1117–1134Google Scholar
  65. Stamenović D, Wilson TA (1985) A strain energy function for lung parenchyma. J Biomech Eng 107: 81–86CrossRefGoogle Scholar
  66. Stamenović D, Yager D (1988) Elastic porperties of air- and liquid-filled lung parenchyma. J Appl Physiol 65(6): 2565–2570Google Scholar
  67. Sugihara T, Hildebrandt J, Martin CJ (1972) Viscoelastic properties of alveolar wall. J Appl Physiol 33(1): 93–98Google Scholar
  68. Suki B, Bates JHT (2011) Lung tissue mechanics as an emergent phenomenon. J Appl Physiol 110: 1111–1118CrossRefGoogle Scholar
  69. Suki B, Ito S, Stamenović D, Lutchen KR, Ingenito EP (2005) Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J Appl Physiol 98: 1892–1899CrossRefGoogle Scholar
  70. Tawhai MH, Burrowes KS (2003) Developing integrative computational models of pulmonary structure. Anat Rec B New Anat 275: 207–218CrossRefGoogle Scholar
  71. Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Clarendon Press, OxfordGoogle Scholar
  72. Truesdell C (1953) The mechanical foundations of elasticity and fluid dynamics. J Ration Mech Anal 2: 593–616MathSciNetMATHGoogle Scholar
  73. Truesdell C (1955) Hypoelasticity. J Ration Mech Anal 4: 83–133MathSciNetMATHGoogle Scholar
  74. Truesdell C (1955) The simplest rate theory of pure elasticity. Commun Pure Appl Math 8: 123–132MathSciNetMATHCrossRefGoogle Scholar
  75. Truesdell C (1956) Hypo-elastic shear. J Appl Phys 27: 441–447MathSciNetCrossRefGoogle Scholar
  76. Vawter DL (1980) A finite element model for macroscopic deformation of the lung. J Biomech Eng 102: 1–7CrossRefGoogle Scholar
  77. Wall WA, Wiechert L, Comerford A, Rausch S (2010) Towards a comprehensive computational model for the respiratory system. Int J Numer Method Biomed Eng 26: 807–827. doi:10.1002/cnm.1378 MATHGoogle Scholar
  78. Weibel ER, Gil J (1977) Structure-function relationships at the alveolar level. In: West JB (eds) Bioengineering aspects of the lung, lung biology in health and disease, vol 3. Marcel Dekker, New York, pp 1–81Google Scholar
  79. West JB (2007) Respiratory physiology: the essentials, 8th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  80. Wilson TA, Bachofen H (1982) A model for mechanical structure of the alveolar duct. J Appl Physiol 52(4): 1064–1070Google Scholar
  81. Zaremba S (1903) Sur une forme perfectionnée de la théorie de la relaxation. Bulletin de l’Académie de Cracovie, pp 594–614Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSaginaw Valley State UniversityUniversity CenterUSA
  2. 2.Biological Monitoring and Modeling, Pacific Northwest National LaboratoryOlympiaUSA

Personalised recommendations