Tenocyte contraction induces crimp formation in tendon-like tissue

  • Andreas Herchenhan
  • Nicholas S. Kalson
  • David F. Holmes
  • Patrick Hill
  • Karl E. KadlerEmail author
  • Lee MargettsEmail author
Open Access
Original Paper


Tendons are composed of longitudinally aligned collagen fibrils arranged in bundles with an undulating pattern, called crimp. The crimp structure is established during embryonic development and plays a vital role in the mechanical behaviour of tendon, acting as a shock-absorber during loading. However, the mechanism of crimp formation is unknown, partly because of the difficulties of studying tendon development in vivo. Here, we used a 3D cell culture system in which embryonic tendon fibroblasts synthesise a tendon-like construct comprised of collagen fibrils arranged in parallel bundles. Investigations using polarised light microscopy, scanning electron microscopy and fluorescence microscopy showed that tendon constructs contained a regular pattern of wavy collagen fibrils. Tensile testing indicated that this superstructure was a form of embryonic crimp producing a characteristic toe region in the stress–strain curves. Furthermore, contraction of tendon fibroblasts was the critical factor in the buckling of collagen fibrils during the formation of the crimp structure. Using these biological data, a finite element model was built that mimics the contraction of the tendon fibroblasts and monitors the response of the Extracellular matrix. The results show that the contraction of the fibroblasts is a sufficient mechanical impulse to build a planar wavy pattern. Furthermore, the value of crimp wavelength was determined by the mechanical properties of the collagen fibrils and inter-fibrillar matrix. Increasing fibril stiffness combined with constant matrix stiffness led to an increase in crimp wavelength. The data suggest a novel mechanism of crimp formation, and the finite element model indicates the minimum requirements to generate a crimp structure in embryonic tendon.


Finite element modelling Chick embryonic tendon Crimp Collagen Tension Extracellular matrix 



Embryonic chick metatarsal tendon


Finite element analysis


Finite element modelling


Scanning electron microscopy


Extracellular matrix


Plane polarised light microscopy


  1. Araujo JC, Teran FC, Oliveira RA, Nour EA, Montenegro MA, Campos JR, Vazoller RF (2003) Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge. J Electron Microsc (Tokyo) 52(4): 429–433CrossRefGoogle Scholar
  2. Ault HK, Hoffman AH (1992) A composite micromechanical model for connective tissues: Part II–application to rat tail tendon and joint capsule. J Biomech Eng 114(1): 142–146CrossRefGoogle Scholar
  3. Bendjaballah MZ, Shirazi-Adl A, Zukor DJ (1995) Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. Knee 2(2): 69–79CrossRefGoogle Scholar
  4. Benjamin M, Kaiser E, Milz S (2008) Structure-function relationships in tendons: a review. J Anat 212(3): 211–228CrossRefGoogle Scholar
  5. Chan YP, Tang CY, Tsui CP, Kojic M, Ng GYF (2008) A mechanistic study of tendon fibre using a cell model. Indian Eng Res 5: 28–37Google Scholar
  6. de Campos Vidal B (2003) Image analysis of tendon helical superstructure using interference and polarized light microscopy. Micron 34(8): 423–432CrossRefGoogle Scholar
  7. Desmouliere A, Chaponnier C, Gabbiani G (2005) Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 13(1): 7–12CrossRefGoogle Scholar
  8. Diamant J, Keller A, Baer E, Litt M, Arridge RG (1972) Collagen; ultrastructure and its relation to mechanical properties as a function of ageing. Proc R Soc Lond B Biol Sci 180(60): 293–315CrossRefGoogle Scholar
  9. Farooqi JK, Sheikh MA (2006) Finite element modelling of thermal transport in ceramic matrix composites. Comput Mater Sci 37(3): 361–373CrossRefGoogle Scholar
  10. Franchi M, Fini M, Quaranta M, De Pasquale V, Raspanti M, Giavaresi G, Ottani V, Ruggeri A (2007a) Crimp morphology in relaxed and stretched rat Achilles tendon. J Anat 210(1): 1–7CrossRefGoogle Scholar
  11. Franchi M, Trirè A, Quaranta M, Orsini E, Ottani V (2007b) Collagen structure of tendon relates to function. Sci World J 7: 404–420CrossRefGoogle Scholar
  12. Franchi M, Ottani V, Stagni R, Ruggeri A (2010a) Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps. J Anat 216(3): 301–309CrossRefGoogle Scholar
  13. Franchi M, Quaranta M, Macciocca M, Leonardi L, Ottani V, Bianchini P, Diaspro A, Ruggeri A (2010b) Collagen fibre arrangement and functional crimping pattern of the medial collateral ligament in the rat knee. Knee Surg Sports Traumatol Arthrosc 18(12): 1671–1678CrossRefGoogle Scholar
  14. Franchi M, Quaranta M, Macciocca M, De Pasquale V, Ottani V, Ruggeri A (2009) Structure relates to elastic recoil and functional role in quadriceps tendon and patellar ligament. Micron 40(3): 370–377CrossRefGoogle Scholar
  15. Franchi M, Raspanti M, Dell’Orbo C, Quaranta M, De Pasquale V, Ottani V, Ruggeri A (2008) Different crimp patterns in collagen fibrils relate to the subfibrillar arrangement. Connect Tissue Res 49(2): 85–91CrossRefGoogle Scholar
  16. Freed AD, Doehring TC (2005) Elastic model for crimped collagen fibrils. J Biomech Eng 127(4): 587–593CrossRefGoogle Scholar
  17. Giraud-Guille MM, Besseau L (1998) Banded patterns in liquid crystalline phases of type I collagen: relationship with crimp morphology in connective tissue architecture. Connect Tissue Res 37(3–4): 183–193CrossRefGoogle Scholar
  18. Goh KL, Aspden RM, Mathias KJ, Hukins DWL (2004) Finite element analysis of the effect of material properties and fibre shape on stresses in an elastic fibre embedded in an elastic matrix in a fibre,Äìcomposite material. Proc R Soc Lond A Math Phys Eng Sci 460(2048): 2339–2352zbMATHCrossRefGoogle Scholar
  19. Hansen KA, Weiss JA, Barton JK (2002) Recruitment of tendon crimp with applied tensile strain. J Biomech Eng 124(1): 72–77CrossRefGoogle Scholar
  20. Hinz B (2009) Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep 11(2): 120–126CrossRefGoogle Scholar
  21. Hinz B, Gabbiani G (2010) Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives. F1000 Biol Rep 2: 78CrossRefGoogle Scholar
  22. Jarvinen TA, Jarvinen TL, Kannus P, Jozsa L, Jarvinen M (2004) Collagen fibres of the spontaneously ruptured human tendons display decreased thickness and crimp angle. J Orthop Res 22(6): 1303–1309CrossRefGoogle Scholar
  23. Jarvinen TA, Jozsa L, Kannus P, Jarvinen TL, Kvist M, Hurme T, Isola J, Kalimo H, Jarvinen M (1999) Mechanical loading regulates tenascin-C expression in the osteotendinous junction. J Cell Sci 112(Pt 18): 3157–3166Google Scholar
  24. Kalson NS, Holmes DF, Kapacee Z, Otermin I, Lu Y, Ennos RA, Canty-Laird EG, Kadler KE (2010) An experimental model for studying the biomechanics of embryonic tendon: evidence that the development of mechanical properties depends on the actinomyosin machinery. Matrix Biol 29(8): 678–689CrossRefGoogle Scholar
  25. Kannus P (2000) Structure of the tendon connective tissue. Scand J Med Sci Sports 10(6): 312–320CrossRefGoogle Scholar
  26. Kapacee Z, Richardson SH, Lu Y, Starborg T, Holmes DF, Baar K, Kadler KE (2008) Tension is required for fibripositor formation. Matrix Biol 27(4): 371–375CrossRefGoogle Scholar
  27. Ker RF (2002) The implications of the adaptable fatigue quality of tendons for their construction, repair and function. Comp Biochem Physiol A Mol Integr Physiol 133(4): 987–1000CrossRefGoogle Scholar
  28. Lavagnino M, Arnoczky SP, Kepich E, Caballero O, Haut RC (2008) A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading. Biomech Model Mechanobiol 7(5): 405–416CrossRefGoogle Scholar
  29. Leahy JC, Hukins DW (2001) Viscoelastic properties of the nucleus pulposus of the intervertebral disk in compression. J Mater Sci Mater Med 12(8): 689–692CrossRefGoogle Scholar
  30. McNeilly CM, Banes AJ, Benjamin M, Ralphs JR (1996) Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat 189(Pt 3): 593–600Google Scholar
  31. Nation JL (1983) A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technol 58(6): 347–351Google Scholar
  32. Raspanti M, Manelli A, Franchi M, Ruggeri A (2005) The 3D structure of crimps in the rat Achilles tendon. Matrix Biol 24(7): 503–507CrossRefGoogle Scholar
  33. Redaelli A, Vesentini S, Soncini M, Vena P, Mantero S, Montevecchi FM (2003) Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons-a computational study from molecular to microstructural level. J Biomech 36: 1555–1569CrossRefGoogle Scholar
  34. Reese SP, Maas SA, Weiss JA (2010) Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson’s ratios. J Biomech 43(7): 1394–1400CrossRefGoogle Scholar
  35. Rowe RW (1985) The structure of rat tail tendon. Connect Tissue Res 14(1): 9–20MathSciNetCrossRefGoogle Scholar
  36. Sasaki N, Odajima S (1996) Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J Biomech 29(9): 1131–1136CrossRefGoogle Scholar
  37. Shah JS, Palacios E, Palacios L (1982) Development of crimp morphology and cellular changes in chick tendons. Dev Biol 94(2): 499–504CrossRefGoogle Scholar
  38. Svensson RB, Hassenkam T, Grant CA, Magnusson SP (2010) Tensile properties of human collagen fibrils and fascicles are insensitive to environmental salts. Biophys J 99(12): 4020–4027CrossRefGoogle Scholar
  39. Svensson RB, Hassenkam T, Hansen P, Magnusson SP (2010) Viscoelastic behavior of discrete human collagen fibrils. J Mech Behavior Biomed Mater 3(1): 112–115CrossRefGoogle Scholar
  40. van der Rijt JA, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J (2006) Micromechanical testing of individual collagen fibrils. Macromol Biosci 6(9): 697–702CrossRefGoogle Scholar
  41. Wenger MP, Bozec L, Horton MA, Mesquida P (2007) Mechanical properties of collagen fibrils. Biophys J 93(4): 1255–1263CrossRefGoogle Scholar
  42. Yahia LH, Drouin G (1989) Microscopical investigation of canine anterior cruciate ligament and patellar tendon: collagen fascicle morphology and architecture. J Orthop Res 7(2): 243–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andreas Herchenhan
    • 1
  • Nicholas S. Kalson
    • 1
  • David F. Holmes
    • 1
  • Patrick Hill
    • 2
  • Karl E. Kadler
    • 1
    Email author
  • Lee Margetts
    • 3
    Email author
  1. 1.Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix ResearchUniversity of ManchesterManchesterUK
  2. 2.School of Chemical Engineering and Analytical ScienceUniversity of ManchesterManchesterUK
  3. 3.High Performance Computing, Research Computing ServicesUniversity of ManchesterManchesterUK

Personalised recommendations