Biomechanics and Modeling in Mechanobiology

, Volume 11, Issue 3–4, pp 379–390

Computational modeling of bone density profiles in response to gait: a subject-specific approach

  • Henry Pang
  • Abhishek P. Shiwalkar
  • Chris M. Madormo
  • Rebecca E. Taylor
  • Thomas P. Andriacchi
  • Ellen Kuhl
Original Paper

Abstract

The goal of this study is to explore the potential of computational growth models to predict bone density profiles in the proximal tibia in response to gait-induced loading. From a modeling point of view, we design a finite element-based computational algorithm using the theory of open system thermodynamics. In this algorithm, the biological problem, the balance of mass, is solved locally on the integration point level, while the mechanical problem, the balance of linear momentum, is solved globally on the node point level. Specifically, the local bone mineral density is treated as an internal variable, which is allowed to change in response to mechanical loading. From an experimental point of view, we perform a subject-specific gait analysis to identify the relevant forces during walking using an inverse dynamics approach. These forces are directly applied as loads in the finite element simulation. To validate the model, we take a Dual-Energy X-ray Absorptiometry scan of the subject’s right knee from which we create a geometric model of the proximal tibia. For qualitative validation, we compare the computationally predicted density profiles to the bone mineral density extracted from this scan. For quantitative validation, we adopt the region of interest method and determine the density values at fourteen discrete locations using standard and custom-designed image analysis tools. Qualitatively, our two- and three-dimensional density predictions are in excellent agreement with the experimental measurements. Quantitatively, errors are less than 3% for the two-dimensional analysis and less than 10% for the three-dimensional analysis. The proposed approach has the potential to ultimately improve the long-term success of possible treatment options for chronic diseases such as osteoarthritis on a patient-specific basis by accurately addressing the complex interactions between ambulatory loads and tissue changes.

Keywords

Growth Open system thermodynamics Density Bone Finite elements Gait analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman RD (2010) New guidelines for topical NSAIDs in the osteoarthritis treatment paradigm. Curr Med Res Opin 26: 2871–2876CrossRefGoogle Scholar
  2. Ambrosi D, Ateshian GA, Arruda EM, Cowin SC, Dumais J, Goriely A, Holzapfel GA, Humphrey JD, Kemkemer R, Kuhl E, Olberding JE, Taber LA, Garikipati K (2011) Perspectives on biological growth and remodeling. J Mech Phys Solids 59: 863–883MathSciNetCrossRefGoogle Scholar
  3. Andriacchi TP (1994) Dynamics of knee malalignment. Orthop Clin North Am 25: 395–403Google Scholar
  4. Andriacchi TP, Natarajan RN, Hurwitz DE (1997) Musculoskeletal dynamics, locomotion, and clinical applications. In: Mow VC, Hayes WC (eds) Basic orthopaedic biomechanics. 4th edn. Lippincott-Raven, Philadelphia, pp 37–67Google Scholar
  5. Andriacchi TP, Mündermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S (2004) A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng 32: 447–457CrossRefGoogle Scholar
  6. Baliunas AJ, Hurwitz DE, Ryals AB, Karrar A, Case JP, Block JA, Andriacchi TP (2002) Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthr Cartil 10: 573–579CrossRefGoogle Scholar
  7. Bolotin HH (2007) DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 41: 138–154CrossRefGoogle Scholar
  8. Bone HG, Santora AC, Chattopadhyay A, Liberman U (2005) Are we treating women with postmenopausal osteoporosis for their low BMD or high fracture risk?. J Bone Min Res 20: 2064–2065CrossRefGoogle Scholar
  9. Carpenter RD, Carter DR (2010a) The mechanobiological effects of periosteal surface loads. Biomech Model Mechanobiol 7: 227–242CrossRefGoogle Scholar
  10. Carpenter RD, Carter DR (2010b) Computational simulation of spontaneous bone straightening in growing children. Biomech Model Mechanobiol 9: 317–328CrossRefGoogle Scholar
  11. Carter DR, Hayes WC (1977) Compressive behavior of bone as a 2-phase porous structure. J Bone Joint Surg 59: 954–962Google Scholar
  12. Cowin SC, Hegedus DH (1976) Bone remodelling I: theory of adaptive elasticity. J Elast 6: 313–326MathSciNetMATHCrossRefGoogle Scholar
  13. Dequeker J, Mokassa L, Aerssens J, Boonen S (1997) Bone density and local growth factors in generalized osteoarthritis. Microsc Res Tech 37: 358–371CrossRefGoogle Scholar
  14. Gandolini G, Salvioni PM (2004) Is BMD measurement an adequate surrogate for anti-fracture and efficacy?. Aging Clin Exp Res 16: 29–32Google Scholar
  15. Gitman I, Askes H, Kuhl E, Aifantis EC (2010) Stress concentrations in fractured compact bone simulated with a special class of anisotropic gradient elasticity. Int J Solids Struct 47: 1099–1107MATHCrossRefGoogle Scholar
  16. Hambli R, Katerchi H, Benhamou CL (2011) Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech Model Mechanobiol 10: 133–145CrossRefGoogle Scholar
  17. Harrigan TP, Hamilton JJ (1993) Finite element simulation of adaptive bone remodelling: a stability criterion and a time stepping method. Int J Numer Methods Eng 36: 837–854CrossRefGoogle Scholar
  18. Himpel G, Kuhl E, Menzel A, Steinmann P (2005) Computational modelling of isotropic multiplicative growth. Comput Methods Eng Sci 8: 119–134MATHGoogle Scholar
  19. Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ (1987) Adaptive boneremodeling theory applied to prostheticdesign analysis. J Biomech 20: 1135–1150CrossRefGoogle Scholar
  20. Hulet C, Sabatier JP, Souquet D, Locker B, Marcelli C, Vielpeau C (2002) Distribution of bone mineral density at the proximal tibia in knee osteoarthritis. Calcif Tissue Int 71: 315–322CrossRefGoogle Scholar
  21. Hunter DJ, Felson DT (2006) Osteoarthritis. Br Med J 332: 639–642CrossRefGoogle Scholar
  22. Hurwitz DE, Summer DR, Andriacchi TP, Sugar DA (1998) Dynamic knee loads during gait predict proximal tibial bone distribution. J Biomech 31: 423–430CrossRefGoogle Scholar
  23. Jacobs CR, Levenston ME, Beaupre GS, Simo JC, Carter DR (1995) Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach. J Biomech 28: 449–459CrossRefGoogle Scholar
  24. Kaptoge S, Benevolenskaya LI, Bhalla AK, Cannata JB, Boonen S, Falch JA, Felsenberg D, Finn JD, Nuti R, Hoszowski K, Lorenc R, Miazgowski T, Jajic I, Lyritis G, Masaryk P, Naves-Diaz M, Poor G, Reid DM, Scheidt-Nave C, Stepan JJ, Todd CJ, Weber K, Woolf AD, Roy DK, Lunt M, Pye SR, O’Neill TW, Silman AJ, Reeve J (2005) Low BMD is less predictive than reported falls for future limb fractures in women across Europe: results from the European prospective osteoporosis study. Bone 36: 387–398CrossRefGoogle Scholar
  25. Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth—a critical review, a classification of concepts and two new consistent approaches. Comput Mech 32: 71–88MATHCrossRefGoogle Scholar
  26. Kuhl E, Steinmann P (2003a) Theory and numerics of geometrically nonlinear open systems. Int J Numer Methods Eng 58: 1593–1615MathSciNetMATHCrossRefGoogle Scholar
  27. Kuhl E, Steinmann P (2003b) Mass- and volume specific views on thermodynamics for open systems. Proc Royal Soc Lond 459: 2547–2568MathSciNetMATHCrossRefGoogle Scholar
  28. Kuhl E, Steinmann P (2003c) On spatial and material settings of thermo-hyperelastodynamics for open systems. Acta Mech 160: 179–217MATHCrossRefGoogle Scholar
  29. Kuhl E, Steinmann P (2004) Material forces in open system mechanics. Comput Methods Appl Mech Eng 193: 2357–2381MathSciNetMATHCrossRefGoogle Scholar
  30. Lancianese SL, Kwok E, Beck CA, Lerner A (2008) Predicting regional variations in trabecular bone mechanical properties within the human proximal tibia using MR imaging. Bone 43: 1039–1046CrossRefGoogle Scholar
  31. Menzel A (2005) Modelling of anisotropic growth in biological tissues—a new approach and computational aspects. Biomech Model Mechanobiol 3: 147–171CrossRefGoogle Scholar
  32. Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3: 51–61CrossRefGoogle Scholar
  33. Nielsen SP (2000) The fallacy of BMD: a critical review of the diagnostic use of dual X-ray absorptiometry. Clin Rheumatol 19: 174–183CrossRefGoogle Scholar
  34. Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213: 34–40Google Scholar
  35. Reina-Romo E, Gomez-Benito MJ, Garcia-Aznar JM, Dominguez J, Doblare M (2010) Growth mixture model of distraction osteogenesis: effect of pre-traction stresses. Biomech Model Mechanobiol 9: 103–115CrossRefGoogle Scholar
  36. Schipplein OD, Andriacchi TP (1991) Interaction between active and passive knee stabilizers. J Orthop Res 9: 113–119CrossRefGoogle Scholar
  37. Taylor RE, Zheng C, Jackson RP, Doll JC, Chen JC, Holzbaur KRS, Besier T, Kuhl E (2008) The phenomenon of twisted growth: humeral torsion in dominant arms of high performance tennis players. Comput Methods Biomech Biomed Eng 12: 83–93CrossRefGoogle Scholar
  38. Weinans H, Huiskes R, Grootenboer HJ (1992) The behavior of adaptive bone-remodeling simulation models. J Biomech 25: 1425–1441CrossRefGoogle Scholar
  39. Zhang J, Michalenko MM, Kuhl E, Ovaert TC (2010) Characterization of indentation response and stiffness reduction in bone using a continuum damage model. J Mech Behav Biomed Mater 3: 189–202CrossRefGoogle Scholar
  40. Zhao D, Banks SA, D’Lima DD, Colwell CW, Fregly BJ (2007) In vivo medial and lateral tibial loads during dynamic and high flexion activities. J Orthop Res 25: 593–602CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Henry Pang
    • 1
  • Abhishek P. Shiwalkar
    • 1
  • Chris M. Madormo
    • 1
  • Rebecca E. Taylor
    • 1
  • Thomas P. Andriacchi
    • 1
    • 2
  • Ellen Kuhl
    • 1
    • 3
    • 4
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of OrthopaedicsStanford UniversityStanfordUSA
  3. 3.Department of BioengineeringStanford UniversityStanfordUSA
  4. 4.Department of Cardiothoracic SurgeryStanford UniversityStanfordUSA

Personalised recommendations