Multiscale modeling and mechanics of filamentous actin cytoskeleton

  • Hidetaka Yamaoka
  • Shinji Matsushita
  • Yoshitaka Shimada
  • Taiji Adachi


The adaptive structure and functional changes of the actin cytoskeleton are induced by its mechanical behavior at various temporal and spatial scales. In particular, the mechanical behaviors at different scales play important roles in the mechanical functions of various cells, and these multiscale phenomena require clarification. To establish a milestone toward achieving multiscale modeling and simulation, this paper reviews mathematical analyses and simulation methods applied to the mechanics of the filamentous actin cytoskeleton. The actin cytoskeleton demonstrates characteristic behaviors at every temporal and spatial scale, and mathematical models and simulation methods can be applied to each level of actin cytoskeletal structure ranging from the molecular to the network level. This paper considers studies on mathematical models and simulation methods based on the molecular dynamics, coarse-graining, and continuum dynamics approaches. Every temporal and spatial scale of actin cytoskeletal structure is considered, and it is expected that discrete and continuum dynamics ranging from functional expression at the molecular level to macroscopic functional expression at the whole cell level will be developed and applied to multiscale modeling and simulation.


Actin filament Multiscale modeling and simulation Coarse-grained modeling Computational biomechanics Molecular dynamics Continuum dynamics Mechanobiology Biomechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi T et al (2010) Approach behavior of binding proteins toward actin filament: Brownian dynamics simulation. Trans Japan Soc Mech Eng A Sol Mech Mater Eng 76: 1119–1127 (in Japanese)Google Scholar
  2. Alder BJ, Wainwright TE (1957) Phase transition for a hard sphere system. J Chem Phys 27: 1208–1209CrossRefGoogle Scholar
  3. Ayton GS et al (2007) Multiscale modeling of biomolecular systems: in serial and in parallel. Curr Opin Struct Biol 17: 192–198CrossRefGoogle Scholar
  4. Bathe M (2008) A finite element framework for computation of protein normal modes and mechanical response. Proteins 70: 1595–1609CrossRefGoogle Scholar
  5. ben-Avraham D, Tirion MM (1995) Dynamic and elastic properties of F-actin: a normal-mode analysis. Biophys J 68: 1231–1245CrossRefGoogle Scholar
  6. ben-Avraham D, Tirion MM (1998) Normal modes analyses of macromolecules. Physica A 249: 415–423CrossRefGoogle Scholar
  7. Bossis G et al (1982) Brownian dynamics and the fluctuation dissipation theorem. Mol Phys 45: 191–196CrossRefGoogle Scholar
  8. Burton DA, Gould T (2007) Dynamical model of Cosserat nanotubes. J Phys 62: 23–33CrossRefGoogle Scholar
  9. Carlsson AE (2006) Stimulation of actin polymerization by filament severing. Biophys J 90: 413–422CrossRefGoogle Scholar
  10. Cascella M et al (2008) Topologically based multipolar reconstruction of electrostatic interactions in multiscale simulations of proteins. J Chem Theory Comput 4: 1378–1385CrossRefGoogle Scholar
  11. Chen LF et al (2002) Molecular modeling of averaged rigor crossbridges from tomograms of insect flight muscle. J Struct Biol 138: 92–104CrossRefGoogle Scholar
  12. Chu JW, Voth GA (2005) Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis. Proc Natl Acad Sci USA 102: 13111–13116CrossRefGoogle Scholar
  13. Chu JW, Voth GA (2006) Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. Biophys J 90: 1572–1582CrossRefGoogle Scholar
  14. Cosserat E, Cosserat F (1909) Théorie des corps deformable. Hermann et Fils, ParisGoogle Scholar
  15. Dalhaimer P, Pollard TD (2008) Nucleotide-mediated conformational changes of monomeric actin and Arp3 studied by molecular dynamics simulations. J Mol Biol 376:166–183CrossRefGoogle Scholar
  16. Das M et al (2007) Effective medium theory of semiflexible filamentous networks. Phys Rev Lett 99: 038101CrossRefGoogle Scholar
  17. Deriu MA et al (2011) Biomechanics of actin filaments: a computational multi-level study. J Biomech 44: 630–636CrossRefGoogle Scholar
  18. Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30: 191–196CrossRefGoogle Scholar
  19. Gardel ML et al (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304: 1301–1305CrossRefGoogle Scholar
  20. Geiger B, Bershadsky A (2001) Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 13: 584–592CrossRefGoogle Scholar
  21. Gittes F et al (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120: 923–934CrossRefGoogle Scholar
  22. Goldberg MB (2001) Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev 65: 595–626CrossRefGoogle Scholar
  23. Graceffa P, Dominguez R (2003) Crystal structure of monomeric actin in the ATP state—structural basis of nucleotide-dependent actin dynamics. J Biol Chem 278: 34172–34180CrossRefGoogle Scholar
  24. Hale AL, Meirovitch L (1980) A general substructure synthesis method for the dynamic simulation of complex structures. J Sound Vib 69: 309–326MATHCrossRefGoogle Scholar
  25. Hayakawa K et al (2008) Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci 121: 496–503CrossRefGoogle Scholar
  26. Head DA et al (2003) Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys Rev E 68: 061907CrossRefGoogle Scholar
  27. Hoffman KA et al (2003) Link, twist, energy and the stability of DNA minicircles. Biopolymers 70: 145–157CrossRefGoogle Scholar
  28. Holmes KC et al (1990) Atomic model of the actin filament. Nature 347: 44–49CrossRefGoogle Scholar
  29. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19: 155–160CrossRefGoogle Scholar
  30. Huisman EM et al (2007) Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior. Phys Rev Lett 99: 298193CrossRefGoogle Scholar
  31. Ingber DE (2003) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116: 157–173Google Scholar
  32. Inoue Y et al (2010) Simulations of dynamics of actin filaments by remodeling them in shear flows. Comput Biol Med 40: 876–882CrossRefGoogle Scholar
  33. Inoue Y, Adachi T (2011) Coarse-grained Brownian rachet model of membrane protrusion on cellular scale. Biomech Model Mechanobiol. doi: 10.1007/s10237-010-0250-6
  34. Isambert H, Maggs AC (1996) Dynamics and Rheology of actin solutions. Macromol 29: 1036–1040CrossRefGoogle Scholar
  35. Isambert H et al (1995) Flexibility of actin-filaments derived from thermal fluctuations. J Biol Chem 270: 11437–11444CrossRefGoogle Scholar
  36. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11: 224–230CrossRefGoogle Scholar
  37. Janmey PJ et al (2007) Negative normal stress in semiflexible biopolymer gels. Nat Mater 6: 48–51CrossRefGoogle Scholar
  38. Kim T et al (2009) Computational analysis of a cross-linked actin like networks. Exp Mech 49: 91–104CrossRefGoogle Scholar
  39. Kojima H et al (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc Natl Acad Sci USA 91: 12962–12966CrossRefGoogle Scholar
  40. Kroy K, Frey E (1996) Force-extension relation and plateau modulus for wormlike chains. Phys Rev Lett 77: 306–309CrossRefGoogle Scholar
  41. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84: 359–369CrossRefGoogle Scholar
  42. Lee J et al (1994) Traction forces generated by locomoting keratocytes. J Cell Biol 127: 1957–1964CrossRefGoogle Scholar
  43. Levine AJ et al (2004) The deformations field in semiflexible networks. J Phys Condens Matter 16: S2079–S2088CrossRefGoogle Scholar
  44. Liu J et al (2007) Visualizing the strain field in semiflexible polymer networks: strain fluctuations and nonlinear Rheology of F-actin gels. Phys Rev Lett 98: 198304CrossRefGoogle Scholar
  45. Lu H et al (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75: 662–671CrossRefGoogle Scholar
  46. Lyman et al (2008) Systematic multiscale parameterization of heterogeneous elastic network models of proteins. Biophys J 95: 4183–4192CrossRefGoogle Scholar
  47. MacKintosh FC et al (1995) Elasticity of semiflexible biopolymer networks. Phys Rev Lett 75: 4425–4428CrossRefGoogle Scholar
  48. Maggs AC (1997) Two plateau moduli for actin gels. Phys Rev E 55: 7396–7400CrossRefGoogle Scholar
  49. Marko JF (1997) Stretching must twist DNA. Europhys Lett 38: 183–188MathSciNetCrossRefGoogle Scholar
  50. Matsushita S et al (2010a) Evaluation of extensional and torsional stiffness of single actin filaments by molecular dynamics analysis. J Biomech 43: 3162–3167CrossRefGoogle Scholar
  51. Matsushita S et al (2010b) Quantitative evaluation of mechanical behaviors of actin filament under different mechanical conditions. In: Proceeding of the 6th world congress of biomechanicsGoogle Scholar
  52. McCammon JA et al (1977) Dynamics of folded proteins. Nature 267: 585–590CrossRefGoogle Scholar
  53. Ming D et al (2003a) Substructure synthesis method for simulating large molecular complexes. Proc Natl Acad Sci USA 100: 104–109CrossRefGoogle Scholar
  54. Ming D et al (2003b) Simulation of F-actin filaments of several microns. Biophys J 85: 27–35CrossRefGoogle Scholar
  55. Mitchison TJ, Cramer LP (1996) Actin-based cell motility and cell locomotion. Cell 84: 371–379CrossRefGoogle Scholar
  56. Mizuno D et al (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315: 370–373CrossRefGoogle Scholar
  57. Mogilner A, Oster G (1996) Cell motility driven by actin polymerization. Biophys J 71: 3030–3045CrossRefGoogle Scholar
  58. Morse DC (1998a) Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 1. Model and stress tensor. Macromolecules 31: 7030–7043CrossRefGoogle Scholar
  59. Morse DC (1998b) Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response. Macromolecules 31: 7044–7067CrossRefGoogle Scholar
  60. Morse DC (1998c) Viscoelasticity of tightly entangled solutions of semiflexible polymers. Phys Rev E 58: R1237–R1240CrossRefGoogle Scholar
  61. Morse DC et al (2001) Tube diameter in tightly entangled solutions of semiflexible polymers. Phys Rev E 63: 031502CrossRefGoogle Scholar
  62. Narita A, Maeda Y (2007) Molecular determination by electron microscopy of the actin filament end structure. J Mol Biol 365: 480–501CrossRefGoogle Scholar
  63. Nemethova M et al (2008) Bundling the actin cytoskeleton: filopodia contribute to the construction of contractile bundles in the lamella. J Cell Biol 180: 1233–1244CrossRefGoogle Scholar
  64. Oda T et al (2009) The nature of the globular-to fibrous-actin transition. Nature 457: 441–445CrossRefGoogle Scholar
  65. Okeyo KO et al (2010) Mechanical regulation of actin network dynamics in migrating cells. J Biomech Sci Eng 5: 186–207CrossRefGoogle Scholar
  66. Otterbein LR et al (2001) The crystal structure of uncomplexed actin in the ADP state. Science 293: 708–711CrossRefGoogle Scholar
  67. Padding JT et al (2009) Efficient simulation of noncrossing fibers and chains in a hydrodynamic solvent. J Chem Phys 130: 144903CrossRefGoogle Scholar
  68. Palmer JS, Boyce MC (2008) Constitutive modeling of the stress-strain behavior of F-actin filament networks. Acta Biomater 4: 597–612CrossRefGoogle Scholar
  69. Park et al (2006) Atomistic simulation approach to a continuum description of self-assembled β-sheet filaments. Biophys J 90: 2510–2524CrossRefGoogle Scholar
  70. Pfaendtner J et al (2009) Nucleotide-dependent conformational states of actin. Proc Natl Acad Sci USA 106: 12723–12728CrossRefGoogle Scholar
  71. Pollard TD et al (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29: 545–576CrossRefGoogle Scholar
  72. Pollard TD, Berro J (2009) Mathematical models and simulations of cellular processes based on actin filaments. J Biol Chem 284: 5433–5437CrossRefGoogle Scholar
  73. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112: 453–465CrossRefGoogle Scholar
  74. Pollard TD, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Ann Rev Biochem 55: 987–1035CrossRefGoogle Scholar
  75. Prochniewiez E et al (2009) Cofilin increases the torsional flexibility and dynamics of actin filaments. J Mol Biol 353: 990–1000CrossRefGoogle Scholar
  76. Riveline D et al (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153: 1175–1185CrossRefGoogle Scholar
  77. Satcher RL Jr, Dewey CF Jr (1996) Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys J 71: 109–118CrossRefGoogle Scholar
  78. Schmidt A, Hall MN (1998) Signaling to the actin cytoskeleton. Annu Rev Cell Dev Biol 14: 305–338CrossRefGoogle Scholar
  79. Sept D, McCammon JA (2001) Thermodynamics and kinetics of actin filament mucleation. Biophys J 81: 667–674CrossRefGoogle Scholar
  80. Shimada Y et al (2009) Coarse-grained modeling and simulation of actin filament behavior based on Brownian dynamics method. Mol Cell Biomech 6: 161–173Google Scholar
  81. Smith ML, Healey TJ (2008) Predicting the onset of DNA supercoiling using a non-linear hemitropic elastic rod. Int J Non-Linear Mech 43: 1020–1028CrossRefGoogle Scholar
  82. Stricker J et al (2010) Mechanics of the F-actin cytoskeleton. J Biomech 43: 9–14CrossRefGoogle Scholar
  83. Suda H, Saito M (1994) Molecular-dynamics simulations for actin monomers in solution. J Theor Biol 171: 347–349CrossRefGoogle Scholar
  84. Sultan C et al (2004) A computational tensegrity model predicts dynamic rheological behaviors in living cells. Ann Biomed Eng 32: 520–530CrossRefGoogle Scholar
  85. Ter-Oganessian N et al (2005) Active microrheology of networks composed of semiflexible polymers: computer simulation of magnetic tweezers. Phys Rev E 72: 041510CrossRefGoogle Scholar
  86. Theriot JA, Mitchson TJ (1991) Actin microfilament dynamics in locomoting cells. Nature 352: 126–131CrossRefGoogle Scholar
  87. Tsuda Y et al (1996) Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proc Natl Acad Sci USA 93: 12937–12942CrossRefGoogle Scholar
  88. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7: 265–275CrossRefGoogle Scholar
  89. Wang N et al (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci USA 98: 7765–7770CrossRefGoogle Scholar
  90. Winder SJ, Ayscough KR (2005) Actin-binding proteins. J Cell Sci 118: 651–654CrossRefGoogle Scholar
  91. Wriggers W, Schulten K (1997) Stability and dynamics of G-actin: back-door water diffusion and behavior of a subdomain 3/4 loop. Biophys J 73: 624–639CrossRefGoogle Scholar
  92. Wriggers W, Schulten K (1999) Investigating a back door mechanism of actin phosphate release by steered molecular dynamics. Proteins 35: 262–273CrossRefGoogle Scholar
  93. Yamaoka H, Adachi T (2010a) Coupling between axial stretch and bending/twisting deformation of actin filaments caused by a mismatched centroid from the center axis. Int J Mech Sci 52: 329–333CrossRefGoogle Scholar
  94. Yamaoka H, Adachi T (2010b) Continuum dynamics on a vector bundle for a directed medium. J Phys A Math Theor 43: 325209MathSciNetCrossRefGoogle Scholar
  95. Zigmond SH (1993) Recent quantitative studies of actin filament turnover during cell locomotion. Cell Motil Cytoskelet 25: 309–316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hidetaka Yamaoka
    • 1
    • 2
  • Shinji Matsushita
    • 1
    • 2
    • 3
  • Yoshitaka Shimada
    • 1
    • 4
  • Taiji Adachi
    • 1
    • 2
    • 3
  1. 1.Computational Cell Biomechanics TeamVCAD System Research Program, RIKENSaitamaJapan
  2. 2.Department of Biomechanics, Institute for Frontier Medical SciencesKyoto UniversityKyotoJapan
  3. 3.Department of Micro Engineering, Graduate School of EngineeringKyoto UniversityKyotoJapan
  4. 4.Department of Mechanical Engineering and Science, Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations