Remodelling of collagen fibre transition stretch and angular distribution in soft biological tissues and cell-seeded hydrogels

  • Thomas Nagel
  • Daniel J. Kelly
Original Paper


The extracellular matrix in many biological tissues is adapted to its mechanical environment. In this study, a phenomenological model for collagen remodelling is introduced that incorporates angular remodelling (fibre reorientation) and the adaptation of the so-called transition stretch. This is achieved by introducing a local stress-free configuration for the collagen network by a multiplicative decomposition of the deformation gradient and the appropriate definition of the anisotropic free Helmholtz energy potentials and structure tensors. The collagen network is either treated using discrete fibre directions or a continuous angular distribution. The first part of the study illustrates the influence of force- and displacement-controlled loading on either stress- or deformation-driven remodelling processes in tissues with various degrees of fibre reinforcement. The model is then applied to recent experimental studies of collagen remodelling, specifically periosteum adaptation (Foolen et al. in J Biomech 43(16):3168–3176, 2010), collagen gel (Thomopoulos et al. in J Biomech Eng 127(5):742–750, 2005) and fibrin cruciform (Sander et al. in Ann Biomed Eng 1–16, 2010) compaction. The model is able to capture the basic effects of an adapting transition stretch over time in the periosteal simulations, as well as the compaction and the development of structural anisotropy in the collagen and fibrin gels. The model can potentially be applied to elucidate structure–function relationships, better interpret in vitro experiments involving collagen remodelling, and help investigate aspects of certain pathologies, such as connective tissue contracture.


Fibre remodelling Anisotropy Transition stretch Natural configuration Reorientation Multiplicative 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ateshian GA, Ricken T (2010) Multigenerational interstitial growth of biological tissues. Biomech Model Mechanobiol 9(6): 689–702. doi: 10.1007/s10237-010-0205-y CrossRefGoogle Scholar
  2. Ateshian GA, Rajan V, Chahine NO, Canal CE, Hung CT (2009) Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng 131(6):061003. doi: 10.1115/1.3118773.
  3. Baaijens F, Bouten C, Driessen N (2010) Modeling collagen remodeling. J Biomech 43(1): 166–175. doi: 10.1016/j.jbiomech.2009.09.022 CrossRefGoogle Scholar
  4. Benninghoff A (1925) Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. Zweiter Teil: Der Aufbau des Gelenkknorpels in seinen Beziehungen zur Funktion. Zeit Zellforsch und Mikroskop Anat 2: 783–862CrossRefGoogle Scholar
  5. Cacho F, Elbischger P, Rodrguez J, Doblar M, Holzapfel G (2007) A constitutive model for fibrous tissues considering collagen fiber crimp. Int J Non Linear Mech 42(2): 391–402. doi: 10.1016/j.ijnonlinmec.2007.02.002., special Issue in Honour of Dr Ronald S. RivlinGoogle Scholar
  6. Calve S, Dennis RG, Kosnik PE, Baar K, Grosh K, Arruda EM (2004) Engineering of functional tendon. Tissue Eng 10(5–6): 755–761. doi: 10.1089/1076327041348464 CrossRefGoogle Scholar
  7. Chandran PL, Barocas VH (2006) Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J Biomech Eng 128(2): 259–270. doi: 10.1115/1.2165699 CrossRefGoogle Scholar
  8. Cullinane DM, Fredrick A, Eisenberg SR, Pacicca D, Elman MV, Lee C, Salisbury K, Gerstenfeld LC, Einhorn TA (2002) Induction of a neoarthrosis by precisely controlled motion in an experimental mid-femoral defect. J Orthop Res 20(3): 579–586. doi: 10.1016/S0736-0266(01)00131-0 CrossRefGoogle Scholar
  9. Davol A, Bingham MS, Sah RL, Klisch SM (2008) A nonlinear finite element model of cartilage growth. Biomech Model Mechanobiol 7(4): 295–307. doi: 10.1007/s10237-007-0098-6 CrossRefGoogle Scholar
  10. Donkelaar Cv, Wilson W (2006) Chondrocyte hypertrophy requires matrix turnover. In: Proceedings of 2006 summer bioengineering conference, June 21–25, Amelia Island Plantation, Amelia Island, Florida, USAGoogle Scholar
  11. Driessen NJB, Boerboom RA, Huyghe JM, Bouten CVC, Baaijens FPT (2003a) Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J Biomech Eng 125(4):549–557. doi: 10.1115/1.1590361. Google Scholar
  12. Driessen NJB, Peters GWM, Huyghe JM, Bouten CVC, Baaijens FPT (2003b) Remodelling of continuously distributed collagen fibres in soft connective tissues. J Biomech 36(8): 1151–1158CrossRefGoogle Scholar
  13. Driessen NJB, Cox MAJ, Bouten CVC, Baaijens FPT (2008) Remodelling of the angular collagen fiber distribution in cardiovascular tissues. Biomech Model Mechanobiol 7(2): 93–103. doi: 10.1007/s10237-007-0078-x CrossRefGoogle Scholar
  14. Eastwood M, Mudera VC, McGrouther DA, Brown RA (1998) Effect of precise mechanical loading on fibroblast populated collagen lattices: morphological changes. Cell Motil Cytoskeleton 40(1): 13–21. doi: 10.1002/(SICI)1097-0169(1998)40:1<?13::AID-CM2?>3.0.CO;2-G CrossRefGoogle Scholar
  15. Farahani RM, Kloth LC (2008) The hypothesis of biophysical matrix contraction : wound contraction revisited. Int Wound J 5(3): 477–482. doi: 10.1111/j.1742-481X.2007.00402.x CrossRefGoogle Scholar
  16. Foolen J, van Donkelaar C, Nowlan N, Murphy P, Huiskes R, Ito K (2008) Collagen orientation in periosteum and perichondrium is aligned with preferential directions of tissue growth. J Orthop Res 26(9): 1263–1268. doi: 10.1002/jor.20586 CrossRefGoogle Scholar
  17. Foolen J, van Donkelaar CC, Soekhradj-Soechit S, Ito K (2010) European society of biomechanics s.m. perren award 2010: an adaptation mechanism for fibrous tissue to sustained shortening. J Biomech 43(16):3168–3176. doi: 10.1016/j.jbiomech.2010.07.040. Google Scholar
  18. Garikipati K, Olberding J, Narayanan H, Arruda E, Grosh K, Calve S (2006) Biological remodelling: stationary energy, configurational change, internal variables and dissipation. J Mech Phys Solids 54(7):1493–1515. doi: 10.1016/j.jmps.2005.11.011. Google Scholar
  19. Görke UJ, Günther H, Nagel T, Wimmer MA (2010) A large strain material model for soft tissues with functionally graded properties. J Biomech Eng 132(7):074502. doi: 10.1115/1.4001312. Google Scholar
  20. Grassl ED, Oegema TR, Tranquillo RT (2003) A fibrin-based arterial media equivalent. J Biomed Mater Res 66A(3): 550–561. doi: 10.1002/jbm.a.10589 CrossRefGoogle Scholar
  21. Guterl CC, Hung CT, Ateshian GA (2010) Electrostatic and non-electrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage. J Biomech,
  22. Hariton I, de Botton G, Gasser TC, Holzapfel GA (2007) Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6(3): 163–175. doi: 10.1007/s10237-006-0049-7 CrossRefGoogle Scholar
  23. Holzapfel G, Gasser T, Ogden R (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61: 1–48. doi: 10.1023/A:1010835316564 MathSciNetzbMATHCrossRefGoogle Scholar
  24. Huang C, Yannas IV (1977) Mechanochemical studies of enzymatic degradation of insoluble collagen fibers. J Biomed Mater Res 11(1): 137–154. doi: 10.1002/jbm.820110113 CrossRefGoogle Scholar
  25. Humphrey JD (1999) Remodeling of a collagenous tissue at fixed lengths. J Biomech Eng 121(6): 591–597CrossRefGoogle Scholar
  26. Humphrey JD (2001) Stress, strain, and mechanotransduction in cells. J Biomech Eng 123(6): 638–641CrossRefGoogle Scholar
  27. Humphrey JD (2008) Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem Biophys 50(2): 53–78. doi: 10.1007/s12013-007-9002-3 CrossRefGoogle Scholar
  28. Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84(2): 649–698. doi: 10.1152/physrev.00031.2003 CrossRefGoogle Scholar
  29. Lanir Y (1979) A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J Biomech 12(6):423–436. doi: 10.1016/0021-9290(79)90027-7. Google Scholar
  30. Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16(1):1–12. doi: 10.1016/0021-9290(83)90041-6. Google Scholar
  31. Lubarda VA (2004) Constitutive theories based on the multiplicative decomposition of deformation gradient: thermoelasticity, elastoplasticity, and biomechanics. Appl Mech Rev 57(2):95–108. doi: 10.1115/1.1591000. Google Scholar
  32. Magnusson SP, Narici MV, Maganaris CN, Kjaer M (2008) Human tendon behaviour and adaptation, in vivo. J Physiol 586(1): 71–81. doi: 10.1113/jphysiol.2007.139105 CrossRefGoogle Scholar
  33. Menzel A (2007) A fibre reorientation model for orthotropic multiplicative growth. Biomech Model Mechanobiol 6(5): 303–320. doi: 10.1007/s10237-006-0061-y CrossRefGoogle Scholar
  34. Nabeshima Y, Grood ES, Sakurai A, Herman JH (1996) Uniaxial tension inhibits tendon collagen degradation by collagenase in vitro. J Orthop Res 14(1): 123–130. doi: 10.1002/jor.1100140120 CrossRefGoogle Scholar
  35. Nagel T, Kelly D (2010) Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue regeneration. In: The 16th annual conference of the section of bioengineering, Royal Academy of Medicine in IrelandGoogle Scholar
  36. Nguyen T, Jones R, Boyce B (2007) Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced composites. Int J Solids Struct 44(25–26):8366–8389. doi: 10.1016/j.ijsolstr.2007.06.020. Google Scholar
  37. Ohsumi T, Flaherty J, Evans M, Barocas V (2008) Three-dimensional simulation of anisotropic cell-driven collagen gel compaction. Biomech Model Mechanobiol 7: 53–62. doi: 10.1007/s10237-007-0075-0 CrossRefGoogle Scholar
  38. Ramasubramanian A, Taber LA (2008) Computational modeling of morphogenesis regulated by mechanical feedback. Biomech Model Mechanobiol 7(2): 77–91. doi: 10.1007/s10237-007-0077-y CrossRefGoogle Scholar
  39. Raykin J, Rachev AI, Rudolph L Gleason J (2009) A phenomenological model for mechanically mediated growth, remodeling, damage, and plasticity of gel-derived tissue engineered blood vessels. J Biomech Eng 131(10):101016. doi: 10.1115/1.4000124.
  40. Reese S (2003) Meso-macro modelling of fibre-reinforced rubber-like composites exhibiting large elastoplastic deformation. Int J Solids Struct 40(4):951–980, doi: 10.1016/S0020-7683(02)00602-9.
  41. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4):455–467. doi: 10.1016/0021-9290(94)90021-3. Google Scholar
  42. Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL (2002) Tensile mechanical properties of three-dimensional type i collagen extracellular matrices with varied microstructure. J Biomech Eng 124(2): 214–222CrossRefGoogle Scholar
  43. Ruberti JW, Hallab NJ (2005) Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem Biophys Res Commun 336(2):483–489. doi: 10.1016/j.bbrc.2005.08.128. Google Scholar
  44. Sacks MS, Smith DB, Hiester ED (1998) The aortic valve microstructure: effects of transvalvular pressure. J Biomed Mater Res 41(1): 131–141. doi: 10.1002/(SICI)1097-4636(199807)41:1<131::AID-JBM16>3.0.CO;2-Q CrossRefGoogle Scholar
  45. Sander E, Barocas V, Tranquillo R (2010) Initial fiber alignment pattern alters extracellular matrix synthesis in fibroblast-populated fibrin gel cruciforms and correlates with predicted tension. Ann Biomed Eng 1–16. doi: 10.1007/s10439-010-0192-2
  46. Silver FH, Siperko LM, Seehra GP (2003) Mechanobiology of force transduction in dermal tissue. Skin Res Technol 9(1): 3–23CrossRefGoogle Scholar
  47. Spurrier R (1978) Comment on singularity-free extraction of a quaternion from a direction-cosine matrix. J Spacecr Rockets 15(4): 255–255CrossRefGoogle Scholar
  48. Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev 48(8):487–545. doi: 10.1115/1.3005109. Google Scholar
  49. Tegmark M (1996) An icosahedron-based method for pixelizing the celestial sphere. Astrophys J Lett 470(2):L81. Google Scholar
  50. Thomas GC, Asanbaeva A, Vena P, Sah RL, Klisch SM (2009) A nonlinear constituent based viscoelastic model for articular cartilage and analysis of tissue remodeling due to altered glycosaminoglycan-collagen interactions. J Biomech Eng 131(10): 101,002. doi: 10.1115/1.3192139 CrossRefGoogle Scholar
  51. Thomopoulos S, Fomovsky GM, Holmes JW (2005) The development of structural and mechanical anisotropy in fibroblast populated collagen gels. J Biomech Eng 127(5): 742–750CrossRefGoogle Scholar
  52. Thomopoulos S, Fomovsky GM, Chandran PL, Holmes JW (2007) Collagen fiber alignment does not explain mechanical anisotropy in fibroblast populated collagen gels. J Biomech Eng 129(5): 642–650. doi: 10.1115/1.2768104 CrossRefGoogle Scholar
  53. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5): 349–363. doi: 10.1038/nrm809 CrossRefGoogle Scholar
  54. Vaishnav RN, Vossoughi J (1987) Residual stress and strain in aortic segments. J Biomech 20(3):235–237, 239. doi: 10.1016/0021-9290(87)90290-9, Google Scholar
  55. Watton PN, Hill NA, Heil M (2004) A mathematical model for the growth of the abdominal aortic aneurysm. Biomech Model Mechanobiol 3(2): 98–113. doi: 10.1007/s10237-004-0052-9 CrossRefGoogle Scholar
  56. Wilson W, Driessen NJB, van Donkelaar CC, Ito K (2006) Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthritis Cartilage 14(11): 1196–1202. doi: 10.1016/j.joca.2006.05.006 CrossRefGoogle Scholar
  57. Wood TO, Cooke PH, Goodship AE (1988) The effect of exercise and anabolic steroids on the mechanical properties and crimp morphology of the rat tendon. Am J Sports Med 16(2): 153–158CrossRefGoogle Scholar
  58. Wrobel LK, Fray TR, Molloy JE, Adams JJ, Armitage MP, Sparrow JC (2002) Contractility of single human dermal myofibroblasts and fibroblasts. Cell Motil Cytoskeleton 52(2): 82–90. doi: 10.1002/cm.10034 CrossRefGoogle Scholar
  59. Zulliger MA, Fridez P, Hayashi K, Stergiopulos N (2004) A strain energy function for arteries accounting for wall composition and structure. J Biomech 37(7): 989–1000. doi: 10.1016/j.jbiomech.2003.11.026 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Trinity Centre for Bioengineering, Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College DublinDublin 2Ireland

Personalised recommendations