Mechanisms of reduced implant stability in osteoporotic bone

Original Paper

Abstract

The determining factors for the fixation of uncemented screws in bone are the bone-implant interface and the peri-implant bone. The goal of this work was to explore the role of the peri-implant bone architecture on the mechanics of the bone-implant system. In particular, the specific aims of the study were to investigate: (i) the impact of the different architectural parameters, (ii) the effects of disorder, and (iii) the deformations in the peri-implant region. A three-dimensional beam lattice model to describe trabecular bone was developed. Various microstructural features of the lattice were varied in a systematic way. Implant pull-out tests were simulated, and the stiffness and strength of the bone-implant system were computed. The results indicated that the strongest decrease in pull-out strength was obtained by trabecular thinning, whereas pull-out stiffness was mostly affected by trabecular removal. These findings could be explained by investigating the peri-implant deformation field. For small implant displacements, a large amount of trabeculae in the peri-implant region were involved in the load transfer from implant to bone. Therefore, trabecular removal in this region had a strong negative effect on pull-out stiffness. Conversely, at higher displacements, deformations mainly localized in the trabeculae in contact with the implant; hence, thinning those trabeculae produced the strongest decrease in the strength of the system. Although idealized, the current approach is helpful for a mechanical understanding of the role played by peri-implant bone.

Keywords

Implant anchorage Peri-implant bone architecture Osteoporosis Finite element method Pull-out test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An Y, Draughn R (2000) Mechanical testing of bone and the bone-implant interface. CRC Press, Boca RatonGoogle Scholar
  2. Andrews E, Gibson L (2001) The influence of cracks, notches and holes on the tensile strength of cellular solids. Acta Mater 49(15): 2975–2979CrossRefGoogle Scholar
  3. Ballarre J, Manjubala I, Schreiner WH, Orellano JC, Fratzl P, Ceré S (2010) Improving the osteointegration and boneimplant interface by incorporation of bioactive particles in solgel coatings of stainless steel implants. Acta Biomater 6: 1601–1609CrossRefGoogle Scholar
  4. Bernhardt R, van den Dolder J, Bierbaum S, Beutner R, Scharnweber D, Jansen J, Beckmann F, Worch H (2005) Osteoconductive modifications of ti-implants in a goat defect model: characterization of bone growth with sr μct and histology. Biomaterials 26(16): 3009–3019CrossRefGoogle Scholar
  5. Chapman JR, Harrington R, Lee K, Anderson P, Tencer A, Kowalski D (1996) Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 118(3): 391–398CrossRefGoogle Scholar
  6. Chen H, Zhou X, Shoumura S, Emura S, Bunai Y (2010) Age- and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck. Osteoporos Int 21: 227–236Google Scholar
  7. Cummings S, Black D, Rubin S (1989) Lifetime risks of hip, colles, or vertebral fracture and coronary heart-disease among white postmenopausal women. Arch Intern Med 149(11): 2445–2448CrossRefGoogle Scholar
  8. Erdogan O, Shafer D, Taxel P, Freilich M (2007) A review of the association between osteoporosis and alveolar ridge augmentation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104(6): 738–746CrossRefGoogle Scholar
  9. Gabet Y, Müller R, Levy J, Dimarchi R, Chorev M, Bab I, Kohavi D (2006) Parathyroid hormone 1-34 enhances titanium implant anchorage in low-density trabecular bone: a correlative micro-computed tomographic and biomechanical analysis. Bone 39(2): 276–282CrossRefGoogle Scholar
  10. Gabet Y, Kohavi D, Voide R, Mueller T, Müller R, Bab I (2010) Endosseous implant anchorage is critically dependent on mechanostructural determinants of peri-implant bone trabeculae. J Bone Miner Res 25(3): 575–583CrossRefGoogle Scholar
  11. Gibson L (2005) Biomechanics of cellular solids. J Biomech 38(3): 377–399MathSciNetCrossRefGoogle Scholar
  12. Gibson L, Ashby M (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeGoogle Scholar
  13. Goldhahn J, Neuhoff D, Schaeren S, Steiner B, Linke B, Aebi M, Schneider E (2006) Osseointegration of hollow cylinder based spinal implants in normal and osteoporotic vertebrae: a sheep study. Arch Orthop Trauma Surg 126(8): 554–561CrossRefGoogle Scholar
  14. Grewal A, Sabbaghian M (1997) Load distribution between threads in threaded connections. J Pressure Vessel Technol 119(1): 91–95CrossRefGoogle Scholar
  15. Guo X, Kim C (2002) Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation. Bone 30(2): 404–411CrossRefGoogle Scholar
  16. Helgason B, Viceconti M, Runarsson TP, Brynjolfsson S (2008) On the mechanical stability of porous coated press fit titanium implants: a finite element study of a pushout test. J Biomech 41(8): 1675–1681CrossRefGoogle Scholar
  17. Huang H, Hsu J, Fuh L, Tu M, Ko C, Shen Y (2008) Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study. J Dent 36(6): 409–417CrossRefGoogle Scholar
  18. Jensen K, Mosekilde L, Mosekilde L (1990) A model of vertebral trabecular bone architecture and its mechanical-properties. Bone 11(6): 417–423CrossRefGoogle Scholar
  19. Ko CC, Kohn D, Hollister S (1996) Effective anisotropic elastic constants of bimaterial interphases: comparison between experimental and analytical techniques. J Mater Sci 7: 109–117CrossRefGoogle Scholar
  20. Liu X, Bevill G, Keaveny T, Sajda P, Guo X (2009a) Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech 42(3): 249– 256CrossRefGoogle Scholar
  21. Liu X, Zhang X, Guo X (2009b) Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone. Bone 45(2): 158–163MathSciNetCrossRefGoogle Scholar
  22. Luxner M, Stampfl J, Pettermann H (2007) Numerical simulations of 3d open cell structures—influence of structural irregularities on elasto-plasticity and deformation localization. Int J Solids Struct 44(9): 2990–3003MATHCrossRefGoogle Scholar
  23. Luxner M, Woesz A, Stampfl J, Fratzl P, Pettermann H (2009) A finite element study on the effects of disorder in cellular structures. Acta Biomater 5(1): 381–390CrossRefGoogle Scholar
  24. Matsunaga S, Shirakura Y, Ohashi T, Nakahara K, Tamatsu Y, Takano N, Ide Y (2010) Biomechanical role of peri-implant cancellous bone architecture. Int J Prosthodont 23: 333–338Google Scholar
  25. Mellal A, Wiskott H, Botsis J, Scherrer S, Belser U (2004) Stimulating effect of implant loading on surrounding bone—comparison of three numerical models and validation by in vivo data. Clin Oral Implant Res 15(2): 239–248CrossRefGoogle Scholar
  26. Mori H, Manabe M, Kurachi Y, Nagumo M (1997) Osseointegration of dental implants in rabbit bone with low mineral density. J Oral Maxil Surg 55(4): 351–361CrossRefGoogle Scholar
  27. Natali A, Pavan P, Ruggero A (2006) Analysis of bone-implant interaction phenomena by using a numerical approach. Clin Oral Implant Res 17(1): 67–74CrossRefGoogle Scholar
  28. Natali A, Carniel E, Pavan P (2008) Investigation of bone inelastic response in interaction phenomena with dental implants. Dent Mater 24(4): 561–569CrossRefGoogle Scholar
  29. Nazarian A, Müller R (2004) Time-lapsed microstructural imaging of bone failure behavior. J Biomech 37(1): 55–65CrossRefGoogle Scholar
  30. Nazarian A, Stauber M, Zurakowski D, Snyder B, Müller R (2006) The interaction of microstructure and volume fraction in predicting failure in cancellous bone. Bone 39(6): 1196–1202CrossRefGoogle Scholar
  31. Peter B, Gauthier O, Laib S, Bujoli B, Guicheux J, Janvier P, van Lenthe G, Müller R, Zambelli P, Bouler J, Pioletti D (2006) Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats. J Biomed Mater Res A 76(1): 133–143Google Scholar
  32. Puleo D, Nanci A (1999) Understanding and controlling the bone-implant interface. Biomaterials 20(23–24): 2311–2321CrossRefGoogle Scholar
  33. Ramamurti B, Orr T, Bragdon C, Lowenstein J, Jasty M, Harris W (1997) Factors influencing stability at the interface between a porous surface and cancellous bone: a finite element analysis of a canine in vivo micromotion experiment. J Biomed Mater Res 36(2): 274–280CrossRefGoogle Scholar
  34. Ruffoni D, Dunlop J, Fratzl P, Weinkamer R (2010) Effect of minimal defects in periodic cellular solids. Philos Mag 90: 1807–1818CrossRefGoogle Scholar
  35. Silva M, Gibson L (1997) The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int J Mech Sci 39(5): 549–563MATHCrossRefGoogle Scholar
  36. Simank H, Stuber M, Frahm R, Helbig L, van Lenthe H, Müller R (2006) The influence of surface coatings of dicalcium phosphate (dcpd) and growth and differentiation factor-5 (gdf-5) on the stability of titanium implants in vivo. Biomaterials 27(21): 3988– 3994CrossRefGoogle Scholar
  37. Søballe K, Hansen E, Brockstedt-Rasmussen H, Hjortdal V, Juhl G, Pedersen C, Hvid I, Bunger C (1991) Fixation of titanium and hydroxyapatite-coated implants in arthritic osteopenic bone. J Arthroplasty 6: 307–316CrossRefGoogle Scholar
  38. Søballe K, Hansen E, Rasmussen H, Jorgensen P, Bunger C (1992) Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J Orthop Res 10(2): 285–299CrossRefGoogle Scholar
  39. Stadlinger B, Pilling E, Huhle M, Mai R, Bierbaum S, Bernhardt R, Scharnweber D, Kuhlisch E, Hempel U, Eckelt U (2007) Influence of extracellular matrix coatings on implant stability and osseointegration: an animal study. J Biomed Mater Res B 83(1): 222–231Google Scholar
  40. Stadlinger B, Pilling E, Mai R, Bierbaum S, Berhardt R, Scharnweber D, Eckelt U (2008) Effect of biological implant surface coatings on bone formation, applying collagen, proteoglycans, glycosaminoglycans and growth factors. J Mater Sci 19(3): 1043–1049CrossRefGoogle Scholar
  41. Stauber M, Müller R (2006) Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporos Int 17(4): 616–626CrossRefGoogle Scholar
  42. Stauber M, Rapillard L, van Lenthe G, Zysset P, Müller R (2006) Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res 21(4): 586–595CrossRefGoogle Scholar
  43. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille J (1998) Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res 43(2): 192–203CrossRefGoogle Scholar
  44. Tsubota K, Adachi T, Tomita Y (2003) Effects of a fixation screw on trabecular structural changes in a vertebral body predicted by remodeling simulation. Ann Biomed Eng 31: 733–740CrossRefGoogle Scholar
  45. Vajjhala S, Kraynik A, Gibson L (2000) A cellular solid model for modulus reduction due to resorption of trabeculae in bone. J Biomech Eng 122(5): 511–515CrossRefGoogle Scholar
  46. van Lenthe G, Stauber M, Müller R (2006) Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties. Bone 39(6): 1182–1189CrossRefGoogle Scholar
  47. Verhulp E, van Rietbergen B, Müller R, Huiskes R (2008) Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. J Biomech 41(7): 1479–1485CrossRefGoogle Scholar
  48. Wermelin K, Suska F, Tengvall P, Thomsen P, Aspenberg P (2008) Stainless steel screws coated with bisphosphonates gave stronger fixation and more surrounding bone. Histomorphometry in rats. Bone 42(2): 365–371CrossRefGoogle Scholar
  49. Wirth A, Mueller T, Vereecken W, Flaig C, Arbenz P, Müller R, van Lenthe G (2010a) Mechanical competence of bone-implant systems can accurately be determined by image-based micro-finite element analyses. Arch Appl Mech 80: 513–525CrossRefGoogle Scholar
  50. Wirth A, Müller R, van Lenthe G (2010b) Computational analysis of small endosseous implants in osteoporotic bone. Eur Cells Mater 20: 58–71Google Scholar
  51. Yeh O, Keaveny T (1999) Biomechanical effects of intraspecimen variations in trabecular architecture: a three-dimensional finite element study. Bone 25(2): 223–228CrossRefGoogle Scholar
  52. Zhang Q, Tan S, Chou S (2004) Investigation of fixation screw pull-out strength on human spine. J Biomech 37(4): 479–485CrossRefGoogle Scholar
  53. Zhang Q, Tan S, Chou S (2006) Effects of bone materials on the screw pull-out strength in human spine. Med Eng Phys 28(8): 795–801MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute for BiomechanicsETH ZurichZurichSwitzerland
  2. 2.Division of Biomechanics and Engineering DesignK.U.LeuvenLeuvenBelgium

Personalised recommendations