A Musculoskeletal model for the lumbar spine

  • Miguel Christophy
  • Nur Adila Faruk Senan
  • Jeffrey C. Lotz
  • Oliver M. O’Reilly
Open Access
Original Paper

Abstract

A new musculoskeletal model for the lumbar spine is described in this paper. This model features a rigid pelvis and sacrum, the five lumbar vertebrae, and a rigid torso consisting of a lumped thoracic spine and ribcage. The motion of the individual lumbar vertebrae was defined as a fraction of the net lumbar movement about the three rotational degrees of freedom: flexion–extension lateral bending, and axial rotation. Additionally, the eight main muscle groups of the lumbar spine were incorporated using 238 muscle fascicles with prescriptions for the parameters in the Hill-type muscle models obtained with the help of an extensive literature survey. The features of the model include the abilities to predict joint reactions, muscle forces, and muscle activation patterns. To illustrate the capabilities of the model and validate its physiological similarity, the model’s predictions for the moment arms of the muscles are shown for a range of flexion–extension motions of the lower back. The model uses the OpenSim platform and is freely available on https://www.simtk.org/home/lumbarspine to other spinal researchers interested in analyzing the kinematics of the spine. The model can also be integrated with existing OpenSim models to build more comprehensive models of the human body.

Keywords

Spinal kinematics Musculoskeletal model Hill-type model Muscle architecture 

References

  1. Adams MA (2004) Biomechanics of back pain. Acupunct Med 22(4): 178–188CrossRefGoogle Scholar
  2. Ahmadi A, Maroufi N, Behtash H, Zekavat H, Parnianpour M (2009) Kinematic analysis of dynamic lumbar motion in patients with lumbar segmental instability using digital videofluoroscopy. Eur Spine J 18(11): 1677–1685CrossRefGoogle Scholar
  3. Anderson J, Hsu A, Vasavada AN (2005) Morphology, architecture, and biomechanics of human cervical multifidus. Spine 30(4): E86–E91CrossRefGoogle Scholar
  4. Arjmand N, Shirazi-Adl A (2006) Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions. J Biomech 39(3): 510–521CrossRefGoogle Scholar
  5. Arnold EM, Ward SR, Lieber RL, Delp SL (2010) A model of the lower limb for analysis of human movement. Ann Biomed Eng 38(2): 269–279CrossRefGoogle Scholar
  6. Bogduk N (1980) A reappraisal of the anatomy of the human lumbar erector spinae. J Anat 131(3): 525–540Google Scholar
  7. Bogduk N (2005) Clinical anatomy of the lumbar spine and sacrum. 4. Churchill Livingstone, New YorkGoogle Scholar
  8. Bogduk N, Johnson G, Spalding D (1998) The morphology and biomechanics of latissimus dorsi. Clin Biomech 13(6): 377–385CrossRefGoogle Scholar
  9. Bogduk N, Macintosh JE, Pearcy MJ (1992a) A universal model of the lumbar back muscles in the upright position. Spine 17(8): 897–913CrossRefGoogle Scholar
  10. Bogduk N, Pearcy MJ, Hadfield G (1992b) Anatomy and biomechanics of psoas major. Clin Biomech 7(2): 109–119CrossRefGoogle Scholar
  11. Brown SHM, McGill SM (2009) The intrinsic stiffness of the in vivo lumbar spine in response to quick releases: implications for reflexive requirements. J Electromyography Kinesiology 19(5): 727–736. doi:10.1016/j.jelekin.2008.04.009 CrossRefGoogle Scholar
  12. Brown SHM, Vera-Garcia F, McGill S (2006) Effects of abdominal muscle coactivation on the externally preloaded trunk: variations in motor control and its effect on spine stability. Spine 31(13): E387–E393CrossRefGoogle Scholar
  13. Cholewicki J, Crisco JJ, Oxland T, Yamamoto I, Panjabi MM (1996) Effects of posture and structure on three-dimensional coupled rotations in the lumbar spine: a biomechanical analysis. Spine 21(21): 2421–2428CrossRefGoogle Scholar
  14. Cholewicki J, Juluru K, McGill S (1999) Intra-abdominal pressure mechanism for stabilizing the lumbar spine. J Biomech 32(1): 13–17CrossRefGoogle Scholar
  15. Cholewicki J, McGill S, Norman RW (1995) Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach. J Biomech 28(3): 321–331CrossRefGoogle Scholar
  16. Cholewicki J, Simons AP, Radebold A (2000) Effects of external trunk loads on lumbar spine stability. J Biomech 33(11): 1377–1385CrossRefGoogle Scholar
  17. Crabtree CA, Higginson JS (2009) Modeling neuromuscular effects of ankle foot orthoses (afos) in computer simulations of gait. Gait & Posture 29(1): 65–70. doi:10.1016/j.gaitpost.2008.06.004 CrossRefGoogle Scholar
  18. Daggfeldt K, Thorstensson A (1997) The role of intra-abdominal pressure in spinal unloading. J Biomech 30(11–12): 1149–1155CrossRefGoogle Scholar
  19. de Zee M, Hansen L, Andersen TB, Wong C, Rasmussen J, Simonsen EB (2003) On the development of a detailed rigid-body spine model. In: Proceedings of international congress on computational bioengineering, Spain,5ppGoogle Scholar
  20. de Zee M, Hansen L, Wong C, Rasmussen J, Simonsen EB (2007) A generic detailed rigid-body lumbar spine model. J Biomech 40(6): 1219–1227CrossRefGoogle Scholar
  21. Delp SL, Anderson F, Arnold AS, Loan JP, Habib A, John C, Guendelman E, Thelen DG (2007) OpenSim:open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11): 1940–1952CrossRefGoogle Scholar
  22. Delp SL, Loan JP (1995) A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput Biol Med 25(1): 21–34CrossRefGoogle Scholar
  23. Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM (1990) An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng 37(8): 757–767. doi:10.1109/10.102791 CrossRefGoogle Scholar
  24. Delp SL, Suryanarayanan S, Murray W, Uhlir J, Triolo RJ (2001) Architecture of the rectus abdominis, quadratus lumborum, and erector spinae. J Biomech 34(3): 371–375CrossRefGoogle Scholar
  25. El-Rich M, Shirazi-Adl A, Arjmand N (2004) Muscle activity, internal loads, and stability of the human spine in standing postures: combined model and in vivo studies. Spine 29(23): 2633–2642CrossRefGoogle Scholar
  26. Erdemir A, McLean S, Herzog W, vanden Bogert AJ (2007) Model-based estimation of muscle forces exerted during movements. Clin Biomech 22(2): 131–154CrossRefGoogle Scholar
  27. Farfan H (1973) Mechanical disorders of the low back. Lea & Febiger, PhiladelphiaGoogle Scholar
  28. Fujii R, Sakaura H, Mukai Y, Hosono N, Ishii T, Iwasaki M, Yoshikawa H, Sugamoto K (2007) Kinematics of the lumbar spine in trunk rotation: In vivo three-dimensional analysis using magnetic resonance imaging. Eur Spine J 16(11): 1867–1874CrossRefGoogle Scholar
  29. Garner B, Pandy M (2003) Estimation of musculotendon properties in the human upper limb. Ann Biomed Eng 31(2): 207–220CrossRefGoogle Scholar
  30. Gilad I, Nissan M (1986) A study of vertebra and disc geometric relations of the human cervical and lumbar spine. Spine 11(2): 154–157CrossRefGoogle Scholar
  31. Granata KP (2006) Response to Static and dynamic stability of the spine. J Biomech 39: 2921–2922CrossRefGoogle Scholar
  32. Gray H (1980) Gray’s anatomy. 36. Warwick and Williams, LondonGoogle Scholar
  33. Han J, Ahn J, Goel VK, Takeuchi R, McGowan D (1992) CT-based geometric data of human spine musculature. Part I. Japanese patients with chronic low back pain. J Spinal Disord 5(4): 448–458CrossRefGoogle Scholar
  34. Hansen L, de Zee M, Rasmussen J, Andersen TB, Wong C, Simonsen EB (2006) Anatomy and biomechanics of the back muscles in the lumbar spine with reference to biomechanical modeling. Spine 31(17): 1888–1899CrossRefGoogle Scholar
  35. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci 126(843): 136–195CrossRefGoogle Scholar
  36. Holzbaur KRS, Murray WM, Delp SL (2005) A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng 33: 829–840. doi:10.1007/s10439-005-3320-7 CrossRefGoogle Scholar
  37. Hultman G, Nordin M, Saraste H, Ohlsèn H (1993) Body composition, endurance, strength, cross-sectional area, and density of mm erector spinae in men with and without low back pain. J Spinal Disord 6(2): 114–123CrossRefGoogle Scholar
  38. Huynh K, Gibson I, Lu W, Jagdish B (2010) Simulating dynamics of thoracolumbar spine derived from LifeMOD under haptic forces. World Acad Sci Eng Technol 64: 278–285Google Scholar
  39. Ikai M, Fukunaga T (1968) Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Eur Appl Physiol Occupational Physiol 26(1): 26–32CrossRefGoogle Scholar
  40. Jorgensen M, Marras W, Granata K, Wiand J (2001) MRI-derived moment-arms of the female and male spine loading muscles. Clin Biomech 16(3): 182–193CrossRefGoogle Scholar
  41. Jorgensen MJ, Marras WS, Gupta P, Waters TR (2003) Effect of torso flexion on the lumbar torso extensor muscle sagittal plane moment arms. Spine J 3(5): 363–369CrossRefGoogle Scholar
  42. Kozanek M, Wang S, Passias PG, Xia Q, Li G, Bono CM, Wood K, Li G (2009) Range of motion and orientation of the lumbar facet joints in vivo. Spine 34(19): E689–E696CrossRefGoogle Scholar
  43. Lambrecht JM, Audu ML, Triolo RJ, Kirsch RF (2009) Musculoskeletal model of trunk and hips for development of seated-posture-control neuroprosthesis. J Rehabil Res Dev 46(4): 515–528CrossRefGoogle Scholar
  44. Lee W-E, Uhm H-W, Nam Y-S (2008) Estimation of tendon slack length of knee extension/flexion muscle. In: Proceedings of the international conference on control, automation and systems (ICCAS 2008). COEX, Seoul, pp 1–4Google Scholar
  45. Li G, Wang S, Passias P, Xia Q, Li G, Wood K (2009) Segmental in vivo vertebral motion during functional human lumbar spine activities. Eur Spine J 18(7): 1013–1021CrossRefGoogle Scholar
  46. Lichtwark G, Wilson A (2008) Optimal muscle fascicle length and tendon stiffness for maximising gastrocnemius efficiency during human walking and running. J Theor Biol 252(4): 662–673CrossRefGoogle Scholar
  47. Lieber RL, Loren GJ, Fridén J (1994) In vivo measurement of human wrist extensor muscle sarcomere length changes. J Neurophysiology 71: 874–881Google Scholar
  48. Lonnemann ME, Paris SV, Gorniak GC (2008) A morphological comparison of the human lumbar multifidus by chemical dissection. J Man Manipulative Ther 16(4): E84–E92Google Scholar
  49. Macintosh JE, Bogduk N (1986) The biomechanics of the lumbar multifidus. Clin Biomech 1: 205–213CrossRefGoogle Scholar
  50. Macintosh JE, Bogduk N (1987) 1987 Volvo award in basic science. The morphology of the lumbar erector spinae. Spine 12(7): 658–668CrossRefGoogle Scholar
  51. Macintosh JE, Bogduk N (1991) The attachments of the lumbar erector spinae. Spine 16(7): 783–792CrossRefGoogle Scholar
  52. Macintosh JE, Bogduk N, Pearcy MJ (1993) The effects of flexion on the geometry and actions of the lumbar erector spinae. Spine 18(7): 884CrossRefGoogle Scholar
  53. Manal K, Buchanan T (2004) Subject-specific estimates of tendon slack length: a numerical method. J Appl Biomech 20: 195–203Google Scholar
  54. Marras W, Jorgensen M, Granata KP, Wiand B (2001) Female and male trunk geometry: size and prediction of the spine loading trunk muscles derived from MRI. Clin Biomech 16(1): 38–46CrossRefGoogle Scholar
  55. McGill S (1996) A revised anatomical model of the abdominal musculature for torso flexion efforts. J Biomech 29(7): 973–977CrossRefGoogle Scholar
  56. McGill S, Childs A, Liebenson C (1999) Endurance times for low back stabilization exercises: Clinical targets for testing and training from a normal database. Arch Phys Med Rehabil 80(8): 941–944CrossRefGoogle Scholar
  57. McGill S, Hughson R, Parks K (2000) Changes in lumbar lordosis modify the role of the extensor muscles. Clin Biomech 15(10): 777–780CrossRefGoogle Scholar
  58. McGill S, Juker D, Kropf P (1996a) Appropriately placed surface EMG electrodes reflect deep muscle activity (psoas, quadratus lumborum, abdominal wall) in the lumbar spine. J Biomech 29(11): 1503–1507CrossRefGoogle Scholar
  59. McGill S, Juker D, Kropf P (1996b) Quantitative intramuscular myoelectric activity of quadratus lumborum during a wide variety of tasks. Clin Biomech 11(3): 170–172CrossRefGoogle Scholar
  60. McGill S, Norman R (1987) Effects of an anatomically detailed erector spinae model on L4/L5 disc compression and shear. J Biomech 20(6): 591–600CrossRefGoogle Scholar
  61. Meakin J, Gregory J, Smith F, Gilbert F, Aspden R (2008) Characterizing the shape of the lumbar spine using an active shape model: reliability and precision of the method. Spine 33(7): 807–813CrossRefGoogle Scholar
  62. Metzger MF, Faruk Senan NA, O’Reilly OM (2010) On cartesian stiffness matrices in rigid body dynamics: An energetic perspective. Multibody Syst Dyn 24(4): 441–472. doi:10.1007/s11044-010-9205-z MATHMathSciNetCrossRefGoogle Scholar
  63. Monteiro NMB, daSilva MPT, Folgado JOMG, Melancia JPL (2011) Structural analysis of the intervertebral discs adjacent to an interbody fusion using multibody dynamics and finite element cosimulation. Multibody Syst Dyn 25: 245–270. doi:10.1007/s11044-010-9226-7 CrossRefGoogle Scholar
  64. Moseley L, Hodges PW, Gandevia SC (2003) External perturbation of the trunk in standing humans differentially activates components of the medial back muscles. J Physiol 547(2): 581–587. doi:10.1113/jphysiol.2002.024950 CrossRefGoogle Scholar
  65. Nachemson A (1966) Electromyographic studies on the vertebral portion of the psoas muscle: With special reference to its stabilizing function of the lumbar spine. Acta Orthop 37(2): 177–190CrossRefGoogle Scholar
  66. Nachemson A (1968) The possible importance of the psoas muscle for stabilization of the lumbar spine. Acta Orthop 39(1–3): 47–57CrossRefGoogle Scholar
  67. Nissan M, Gilad I (1986) Dimensions of human lumbar vertebrae in the sagittal plane. J Biomech 19(9): 753–758CrossRefGoogle Scholar
  68. Ochia RS, Inoue N, Renner SM, Lorenz EP, Lim T-H, Andersson GBJ, An HS (2006) Three-dimensional in vivo measurement of lumbar spine segmental motion. Spine 31(18): 2073–2078CrossRefGoogle Scholar
  69. O’Reilly OM, Metzger MF, Buckley JM, Moody DA, Lotz JC (2009) On the stiffness matrix of the intervertebral joint: Application to total disk replacement. J Biomech Eng 131(8): 081007–1–081007–9CrossRefGoogle Scholar
  70. Pandy MG (1999) Moment arm of a muscle force. Exerc Sport Sci Rev 27: 79–118CrossRefGoogle Scholar
  71. Panjabi MM, Brand RA, White AA (1976) Three-dimensional flexibility and stiffness properties of the human thoracic spine. J Biomech 9(4): 185–192CrossRefGoogle Scholar
  72. Panjabi MM, Goel VK, Oxland T, Takata K, Duranceau J, Krag M, Price M (1992) Human lumbar vertebrae: quantitative three-dimensional anatomy. Spine 17(3): 299–306CrossRefGoogle Scholar
  73. Pearcy MJ, Bogduk N (1988) Instantaneous axes of rotation of the lumbar intervertebral joints. Spine 13(9): 1033–1041CrossRefGoogle Scholar
  74. Pearcy MJ, Tibrewal S (1984) Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography. Spine 9(6): 582–587CrossRefGoogle Scholar
  75. Pearsall DJ, Reid J, Livingston L (1996) Segmental inertial parameters of the human trunk as determined from computed tomography. Ann Biomed Eng 24(2): 198–210CrossRefGoogle Scholar
  76. Pearsall DJ, Reid J, Ross R (1994) Inertial properties of the human trunk of males determined from magnetic resonance imaging. Ann Biomed Eng 22(6): 692–706CrossRefGoogle Scholar
  77. Phillips S, Mercer S, Bogduk N (2008) Anatomy and biomechanics of quadratus lumborum. Proc Inst Mech Eng H J Eng Med 222(2): 151–159CrossRefGoogle Scholar
  78. Ramsay JW, Hunter BV, Gonzalez RV (2009) Muscle moment arm and normalized moment contributions as reference data for musculoskeletal elbow and wrist joint models. J Biomech 42(4): 463–473. doi:10.1016/j.jbiomech.2008.11.035 CrossRefGoogle Scholar
  79. Rosatelli A, Ravichandiran K, Agur A (2008) Three-dimensional study of the musculotendinous architecture of lumbar multifidus and its functional implications. Clin Anat 21(6): 539–546CrossRefGoogle Scholar
  80. Rozumalski A, Schwartz MH, Wervey R, Swanson A, Dykes DC, Novacheck T (2008) The in vivo three-dimensional motion of the human lumbar spine during gait. Gait Posture 28(3): 378–384CrossRefGoogle Scholar
  81. Santaguida P, McGill S (1995) The psoas major muscle: a three-dimensional geometric study. J Biomech 28(3): 339–345CrossRefGoogle Scholar
  82. Schultz AB, Andersson GBJ (1981) Analysis of loads on the lumbar spine. Spine 6(1): 76–82CrossRefGoogle Scholar
  83. Shirazi-Adl A. (1991) Finite-element evaluation of contact loads on facets of an L2–L3 lumbar segment in complex loads. Spine 16(5): 533–541CrossRefGoogle Scholar
  84. Stokes IAF, Gardner-Morse MG (1995) Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness. J Biomech 28(2): 173–186CrossRefGoogle Scholar
  85. Stokes IAF, Gardner-Morse MG (1999) Quantitative anatomy of the lumbar musculature. J Biomech 32(3): 311–316CrossRefGoogle Scholar
  86. Stokes IAF, Gardner-Morse MG, Churchill D, Laible JP (2002) Measurement of a spinal motion segment stiffness matrix. J Biomech 35(4): 517–521CrossRefGoogle Scholar
  87. Stokes IAF, Gardner-Morse MG, Henry SM (2010) Intra-abdominal pressure and abdominal wall muscular function: spinal unloading mechanism. Clin Biomech 25(9): 859–866CrossRefGoogle Scholar
  88. Thelen DG (2003) Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J Biomech Eng 125: 70–77CrossRefGoogle Scholar
  89. Troke M, Moore AP, Maillardet FJ, Hough A, Cheek E (2001) A new, comprehensive normative database of lumbar spine ranges of motion. Clin Rehabil 15(4): 371–379CrossRefGoogle Scholar
  90. van Dieėn J, Kingma I (1999) Total trunk muscle force and spinal compression are lower in asymmetric moments as compared to pure extension moments. J Biomech 32(7): 681–687CrossRefGoogle Scholar
  91. Vasavada AN, Li S, Delp SL (1998) Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles. Spine 23(4): 412–422CrossRefGoogle Scholar
  92. Walker SM, Schrodt G (1974) I segment lengths and thin filament periods in skeletal muscle fibers of the rhesus monkey and the human. Anatomical Record 178(1): 63–81CrossRefGoogle Scholar
  93. Ward SR, Eng CM, Smallwood LH, Lieber RL (2009a) Are current measurements of lower extremity muscle architecture accurate. Clin Orthop Relat Res 467(4): 1074–1082CrossRefGoogle Scholar
  94. Ward SR, Kim CW, Eng CM, Gottschalk LJ, Tomiya A, Garfin SR, Lieber RL (2009b) Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. J Bone Joint Surg 91(1): 176–185CrossRefGoogle Scholar
  95. Ward SR, Tomiya A, Regev GJ, Thacker BE, Benzl RC, Kim CW, Lieber RL (2009c) Passive mechanical properties of the lumbar multifidus muscle support its role as a stabilizer. J Biomech 42(10): 1384–1389CrossRefGoogle Scholar
  96. Weis-Fogh T, Alexander MN (1977) The sustained power output from striated muscle. In: Pedley TJ (ed) Scale effects in animal locomotion. Academic Pess, LondonGoogle Scholar
  97. White AA, Panjabi MM (1978a) The basic kinematics of the human spine. a review of past and current knowledge. Spine 3(1): 12–20CrossRefGoogle Scholar
  98. White AA, Panjabi MM (1978b) Clinical biomechanics of the spine. Lippincott, PhiladelphiaGoogle Scholar
  99. Wilkenfeld A, Audu M, Triolo RJ (2006) Feasibility of functional electrical stimulation for control of seated posture after spinal cord injury: a simulation study. J Rehabil Res Develop 43(2): 139–152CrossRefGoogle Scholar
  100. Woltring HJ, Huiskes R, deLange A, Veldpaus FE (1985) Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics. J Biomech 18(5): 379–389. doi:10.1016/0021-9290(85)90293-3 CrossRefGoogle Scholar
  101. Wong K, Luk K, Leong J, Wong S, Wong K (2006) Continuous dynamic spinal motion analysis. Spine 31(4): 414–419CrossRefGoogle Scholar
  102. Xiao M, Higginson J (2010) Sensitivity of estimated muscle force in forward simulation of normal walking. J Appl Biomech 2(26): 142–149Google Scholar
  103. Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4): 359–411Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Miguel Christophy
    • 1
  • Nur Adila Faruk Senan
    • 1
  • Jeffrey C. Lotz
    • 2
  • Oliver M. O’Reilly
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of California at BerkeleyBerkeleyUSA
  2. 2.Department of Orthopaedic SurgeryUniversity of California at San FranciscoSan FranciscoUSA

Personalised recommendations