Biomechanics and Modeling in Mechanobiology

, Volume 10, Issue 6, pp 939–953 | Cite as

Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation

  • Timothy M. Maul
  • Douglas W. Chew
  • Alejandro Nieponice
  • David A. Vorp
Original Paper


Mesenchymal stem cell (MSC) therapy has demonstrated applications in vascular regenerative medicine. Although blood vessels exist in a mechanically dynamic environment, there has been no rigorous, systematic analysis of mechanical stimulation on stem cell differentiation. We hypothesize that mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward smooth muscle (SMCs) and endothelial cells (ECs). This was tested using a unique experimental platform to differentially apply various mechanical stimuli in parallel. Three forces, cyclic stretch, cyclic pressure, and laminar shear stress, were applied independently to mimic several vascular physiologic conditions. Experiments were conducted using subconfluent MSCs for 5 days and demonstrated significant effects on morphology and proliferation depending upon the type, magnitude, frequency, and duration of applied stimulation. We have defined thresholds of cyclic stretch that potentiate SMC protein expression, but did not find EC protein expression under any condition tested. However, a second set of experiments performed at confluence and aimed to elicit the temporal gene expression response of a select magnitude of each stimulus revealed that EC gene expression can be increased with cyclic pressure and shear stress in a cell-contact-dependent manner. Further, these MSCs also appear to express genes from multiple lineages simultaneously which may warrant further investigation into post-transcriptional mechanisms for controlling protein expression. To our knowledge, this is the first systematic examination of the effects of mechanical stimulation on MSCs and has implications for the understanding of stem cell biology, as well as potential bioreactor designs for tissue engineering and cell therapy applications.


Mechanobiology Cyclic stretch Cyclic pressure Shear stress Immunohistochemistry PCR Morphology Proliferation Mesenchymal stem cells Vascular differentiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10237_2010_285_MOESM1_ESM.docx (3.2 mb)
ESM 1 (DOCX 3305 kb)


  1. Akimoto S, Mitsumata M, Sasaguri T, Yoshida Y (2000) Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(sdi1/cip1/waf1). Circ Res 86(2): 185–190Google Scholar
  2. Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21(3): 451–457CrossRefGoogle Scholar
  3. Butler WT (1989) The nature and significance of osteopontin. Connect Tissue Res 23(2–3): 123–136CrossRefGoogle Scholar
  4. Cappadona C, Redmond EM, Theodorakis NG, McKillop IH, Hendrickson R, Chhabra A, Sitzmann JV, Cahill PA (1999) Phenotype dictates the growth response of vascular smooth muscle cells to pulse pressure in vitro. Exp Cell Res 250(1): 174–186CrossRefGoogle Scholar
  5. Chen J, Kitchen CM, Streb JW, Miano JM (2002) Myocardin: a component of a molecular switch for smooth muscle differentiation. J Mol Cell Cardiol 34(10): 1345–1356CrossRefGoogle Scholar
  6. Chien S (2006) Molecular basis of rheological modulation of endothelial functions: Importance of stress direction. Biorheology 43(2): 95–116Google Scholar
  7. Chomczynski P, Sacchi N (1987) Single-step method of rna isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1): 156–159CrossRefGoogle Scholar
  8. Conklin BS, Zhong DS, Zhao W, Lin PH, Chen C (2002) Shear stress regulates occludin and vegf expression in porcine arterial endothelial cells. J Surg Res 102(1): 13–21CrossRefGoogle Scholar
  9. Conley BA, Smith JD, Guerrero-Esteo M, Bernabeu C, Vary CP (2000) Endoglin, a tgf-beta receptor-associated protein, is expressed by smooth muscle cells in human atherosclerotic plaques. Atherosclerosis 153(2): 323–335CrossRefGoogle Scholar
  10. De R, Zemel A, Safran SA (2007) Dynamics of cell orientation. Nat Phys 3(9): 655–659CrossRefGoogle Scholar
  11. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751): 1139–1143CrossRefGoogle Scholar
  12. Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, Parmacek MS (2003) Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Mol Cell Biol 23(7): 2425–2437CrossRefGoogle Scholar
  13. Elder SH, Fulzele KS, McCulley WR (2005) Cyclic hydrostatic compression stimulates chondroinduction of c3h/10t1/2 cells. Biomech Model Mechanobiol 3(3): 141–146CrossRefGoogle Scholar
  14. Elder SH, Goldstein SA, Kimura JH, Soslowsky LJ, Spengler DM (2001) Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng 29(6): 476–482CrossRefGoogle Scholar
  15. Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86(1): 617–628CrossRefGoogle Scholar
  16. Fernandes JMO, Mommens M, Hagen O, Babiak I, Solberg C (2008) Selection of suitable reference genes for real-time pcr studies of atlantic halibut development. Comp Biochem Physiol Part B: Biochem Mol Biol 150(1): 23–32CrossRefGoogle Scholar
  17. Fisher NI (1993) Statistical analysis of circular data. Cambridge, MelbourneMATHCrossRefGoogle Scholar
  18. Fu J, Wang YK, Yang MT, Desai RA, Yu X, Liu Z, Chen CS (2010) Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 7(9): 733–736CrossRefGoogle Scholar
  19. Galmiche MC, Koteliansky VE, Briere J, Herve P, Charbord P (1993) Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82(1): 66–76Google Scholar
  20. Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone MA (2001) Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci USA 98(8): 4478–4485CrossRefGoogle Scholar
  21. Hamilton DW, Maul TM, Vorp DA (2004) Characterization of the response of bone marrow derived progenitor cells to cyclic strain: Implications for vascular tissue engineering applications. Tissue Eng 10(3/4): 361–370CrossRefGoogle Scholar
  22. Hammond JP, Broadley MR, Craigon DJ, Higgins J, Emmerson ZF, Townsend HJ, White PJ, May ST (2005) Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species. Plant Methods 1(1): 10CrossRefGoogle Scholar
  23. Hirschi KK, Majesky MW (2004) Smooth muscle stem cells. Anat Rec A Discov Mol Cell Evol Biol 276(1): 22–33CrossRefGoogle Scholar
  24. Intengan HD, Schiffrin EL (2001) Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38(3 Pt 2): 581–587CrossRefGoogle Scholar
  25. Isoda K, Nishikawa K, Kamezawa Y, Yoshida M, Kusuhara M, Moroi M, Tada N, Ohsuzu F (2002) Osteopontin plays an important role in the development of medial thickening and neointimal formation. Circ Res 91(1): 77–82CrossRefGoogle Scholar
  26. Ito M (2000) Factors controlling cyclin b expression. Plant Mol Biol 43(5–6): 677–690CrossRefGoogle Scholar
  27. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64(2): 295–312CrossRefGoogle Scholar
  28. Janes KA, Reinhardt HC, Yaffe MB (2008) Cytokine-induced signaling networks prioritize dynamic range over signal strength. Cell 135(2): 343–354CrossRefGoogle Scholar
  29. Javazon EH, Colter DC, Schwarz EJ, Prockop DJ (2001) Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells 19(3): 219–225CrossRefGoogle Scholar
  30. Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC (2007) Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 48(7): 3161–3177CrossRefGoogle Scholar
  31. Kataoka N, Ujita S, Sato M (1998) Effect of flow direction on the morphological responses of cultured bovine aortic endothelial cells. Med Biol Eng Comput 36(1): 122–128CrossRefGoogle Scholar
  32. Keppel G, Wickens TD (2004) Design and analysis: a researchers handbook, 4th edn. Pearson, Upper Saddle RiverGoogle Scholar
  33. Kim DH, Yoo KH, Choi KS, Choi J, Choi SY, Yang SE, Yang YS, Im HJ, Kim KH, Jung HL, Sung KW, Koo HH (2005) Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell. Cytokine 31(2): 119–126CrossRefGoogle Scholar
  34. Kobayashi N, Yasu T, Ueba H, Sata M, Hashimoto S, Kuroki M, Saito M, Kawakami M (2004) Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Exp Hematol 32(12): 1238–1245CrossRefGoogle Scholar
  35. Kreke MR, Huckle WR, Goldstein AS (2005) Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36(6): 1047–1055CrossRefGoogle Scholar
  36. Kuhn NZ, Tuan RS (2010) Regulation of stemness and stem cell niche of mesenchymal stem cells: Implications in tumorigenesis and metastasis. J Cell Physiol 222(2): 268–277CrossRefGoogle Scholar
  37. Kurpinski K, Chu J, Hashi C, Li S (2006) Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci USA 103(44): 16095–16100CrossRefGoogle Scholar
  38. Kurpinski K, Park J, Thakar RG, Li S (2006) Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain. Mol Cell Biomech 3(1): 21–34MATHGoogle Scholar
  39. Lee WC, Rubin JP, Marra KG (2006) Regulation of alpha-smooth muscle actin protein expression in adipose-derived stem cells. Cells Tissues Organs 183(2): 80–86CrossRefGoogle Scholar
  40. Li YJ, Batra NN, You L, Meier SC, Coe IA, Yellowley CE, Jacobs CR (2004) Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Res 22(6): 1283–1289CrossRefGoogle Scholar
  41. Liao XD, Wang XH, Jin HJ, Chen LY, Chen Q (2004) Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and g2/m accumulation in cardiac fibroblasts. Cell Res 14(1): 16–26CrossRefGoogle Scholar
  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2-[delta][delta]ct method. Methods 25(4): 402–408CrossRefGoogle Scholar
  43. Lu J, Landerholm TE, Wei JS, Dong X-R, Wu S-P, Liu X, Nagata K-i, Inagaki M, Majesky MW (2001) Coronary smooth muscle differentiation from proepicardial cells requires rhoa-mediated actin reorganization and p160 rho-kinase activity. Dev Biol 240(2): 404–418CrossRefGoogle Scholar
  44. Maul TM, Hamilton DW, Nieponice A, Soletti L, Vorp DA (2007) A new experimental system for the extended application of cyclic hydrostatic pressure to cell culture. J Biomech Eng 129(1): 110–116CrossRefGoogle Scholar
  45. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Dev Cell 6(4): 483–495CrossRefGoogle Scholar
  46. Millgard J, Lind L (1998) Acute hypertension impairs endothelium-dependent vasodilation. Clin Sci (Colch) 94(6): 601–607Google Scholar
  47. Mills I, Cohen CR, Kamal K, Li G, Shin T, Du W, Sumpio BE (1997) Strain activation of bovine aortic smooth muscle cell proliferation and alignment: Study of strain dependency and the role of protein kinase a and c signaling pathways. J Cell Physiol 170(3): 228–234CrossRefGoogle Scholar
  48. Moore BR (1980) A modification of the rayleigh test for vector data. Biometrika 67(1): 175–180CrossRefGoogle Scholar
  49. Nagatomi J, Arulanandam BP, Metzger DW, Meunier A, Bizios R (2001) Frequency- and duration-dependent effects of cyclic pressure on select bone cell functions. Tissue Eng 7(6): 717–728CrossRefGoogle Scholar
  50. Nerem RM, Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator of the pattern of blood flow. J Biomech Eng 103(3): 172–176CrossRefGoogle Scholar
  51. Nieponice A, Maul TM, Cumer JM, Soletti L, Vorp DA (2006) Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J Biomed Mater Res A 81A(3): 523–530Google Scholar
  52. O’Cearbhaill ED, Punchard MA, Murphy M, Barry FP, McHugh PE, Barron V (2008) Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials 29(11): 1610–1619CrossRefGoogle Scholar
  53. Ohashi T, Sugaya Y, Sakamoto N, Sato M (2007) Hydrostatic pressure influences morphology and expression of ve-cadherin of vascular endothelial cells. J Biomech 40(11): 2399–2405CrossRefGoogle Scholar
  54. Oluwole BO, Du W, Mills I, Sumpio BE (1997) Gene regulation by mechanical forces. Endothel: J Endothel Cell Res 5(2): 85–93Google Scholar
  55. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84(3): 767–801CrossRefGoogle Scholar
  56. Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S (2004) Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng 88(3): 359–368CrossRefGoogle Scholar
  57. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411): 143–147CrossRefGoogle Scholar
  58. Quesenberry PJ, Aliotta JM (2008) The paradoxical dynamism of marrow stem cells: Considerations of stem cells, niches, and microvesicles. Stem Cell Rev 4(3): 137–147CrossRefGoogle Scholar
  59. Resnick N, Gimbrone MA (1995) Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J 9(10): 874–882Google Scholar
  60. Riha GM, Lin PH, Lumsden AB, Yao Q, Chen C (2005) Roles of hemodynamic forces in vascular cell differentiation. Ann Biomed Eng 33(6): 772–779CrossRefGoogle Scholar
  61. Riha GM, Wang X, Wang H, Chai H, Mu H, Lin PH, Lumsden AB, Yao Q, Chen C (2007) Cyclic strain induces vascular smooth muscle cell differentiation from murine embryonic mesenchymal progenitor cells. Surgery 141(3): 394–402CrossRefGoogle Scholar
  62. Rodriguez-Barbero A, Obreo J, Eleno N, Rodriguez-Pena A, Duwel A, Jerkic M, Sanchez-Rodriguez A, Bernabeu C, Lopez-Novoa JM (2001) Endoglin expression in human and rat mesangial cells and its upregulation by tgf-beta1. Biochem Biophys Res Commun 282(1): 142–147CrossRefGoogle Scholar
  63. Ruoslahti E (1988) Fibronectin and its receptors. Annu Rev Biochem 57: 375–413CrossRefGoogle Scholar
  64. Sato M, Ohashi T (2005) Biorheological views of endothelial cell responses to mechanical stimuli. Biorheology 42(6): 421–441Google Scholar
  65. Scaglione S, Wendt D, Miggino S, Papadimitropoulos A, Fato M, Quarto R, Martin I (2007) Effects of fluid flow and calcium phosphate coating on human bone marrow stromal cells cultured in a defined 2d model system. J Biomed Mater Res A 86(2): 411–419Google Scholar
  66. Schwartz EA, Bizios R, Medow MS, Gerritsen ME (1999) Exposure of human vascular endothelial cells to sustained hydrostatic pressure stimulates proliferation. Involvement of the alphaV integrins. Circ Res 84(3): 315–322Google Scholar
  67. Seliktar D, Black RA, Vito RP, Nerem RM (2000) Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 28(4): 351–362CrossRefGoogle Scholar
  68. Shin HY, Smith ML, Toy KJ, Williams PM, Bizios R, Gerritsen ME (2002) Vegf-c mediates cyclic pressure-induced endothelial cell proliferation. Physiol Genomics 11(3): 245–251Google Scholar
  69. Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM (2002) Smooth muscle progenitor cells in human blood. Circulation 106(10): 1199–1204CrossRefGoogle Scholar
  70. Skalak TC, Price RJ, Zeller PJ (1998) Where do new arterioles come from? Mechanical forces and microvessel adaptation. Microcirculation 5(2–3): 91–94Google Scholar
  71. Stegemann JP, Nerem RM (2003) Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation. Ann Biomed Eng 31(4): 391–402CrossRefGoogle Scholar
  72. Stover J, Nagatomi J (2007) Cyclic pressure stimulates DNA synthesis through the pi3k/akt signaling pathway in rat bladder smooth muscle cells. Ann Biomed Eng 35(9): 1585–1594CrossRefGoogle Scholar
  73. Sumpio BE, Widmann MD, Ricotta J, Awolesi MA, Watase M (1994) Increased ambient pressure stimulates proliferation and morphologic changes in cultured endothelial cells. J Cell Physiol 158(1): 133–139CrossRefGoogle Scholar
  74. Vande Geest JP, Di Martino ES, Vorp DA (2004) An analysis of the complete strain field within flexercell membranes. J Biomech 37(12): 1923–1928CrossRefGoogle Scholar
  75. Wang H, Riha GM, Yan S, Li M, Chai H, Yang H, Yao Q, Chen C (2005) Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arterioscler Thromb Vasc Biol 25(9): 1817–1823CrossRefGoogle Scholar
  76. Wasserman SM, Mehraban F, Komuves LG, Yang RB, Tomlinson JE, Zhang Y, Spriggs F, Topper JN (2002) Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol Genomics 12(1): 13–23Google Scholar
  77. Wasserman SM, Topper JN (2004) Adaptation of the endothelium to fluid flow: in vitro analyses of gene expression and in vivo implications. Vasc Med 9(1): 35–45CrossRefGoogle Scholar
  78. Watase M, Awolesi MA, Ricotta J, Sumpio BE (1997) Effect of pressure on cultured smooth muscle cells. Life Sci 61(10): 987–996CrossRefGoogle Scholar
  79. Whaley L, Wong D (1999) Nursing care of infants and children, 5th edn. Mosby, St. LouisGoogle Scholar
  80. Wolinsky H (1970) Response of the rat aortic media to hypertension. Morphological and chemical studies. Circ Res 26(4): 507–522Google Scholar
  81. Xie Z, Pimental DR, Lohan S, Vasertriger A, Pligavko C, Colucci WS, Singh K (2001) Regulation of angiotensin ii-stimulated osteopontin expression in cardiac microvascular endothelial cells: role of p42/44 mitogen-activated protein kinase and reactive oxygen species. J Cell Physiol 188(1): 132–138CrossRefGoogle Scholar
  82. Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Obi S, Ohura N, Matsushita A, Kamiya A, Ando J (2005) Fluid shear stress induces differentiation of flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol 288(4): H1915–1924CrossRefGoogle Scholar
  83. Yamashita JK (2004) Differentiation and diversification of vascular cells from embryonic stem cells. Int J Hematol 80(1): 1–6CrossRefGoogle Scholar
  84. Yoshida T, Kawai-Kowase K, Owens GK (2004) Forced expression of myocardin is not sufficient for induction of smooth muscle differentiation in multipotential embryonic cells. Arterioscler Thromb Vasc Biol 24(9): 1596–1601CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Timothy M. Maul
    • 1
    • 3
    • 4
  • Douglas W. Chew
    • 2
    • 3
    • 4
  • Alejandro Nieponice
    • 2
    • 3
    • 4
  • David A. Vorp
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of BioengineeringUniversity of PittsburghPittsburghUSA
  2. 2.Department of SurgeryUniversity of PittsburghPittsburghUSA
  3. 3.The McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghUSA
  4. 4.The Center for Vascular Remodeling and RegenerationUniversity of PittsburghPittsburghUSA

Personalised recommendations