Biomechanics and Modeling in Mechanobiology

, Volume 10, Issue 6, pp 883–900

Growth-induced buckling of an epithelial layer

  • M. R. Nelson
  • D. Howard
  • O. E. Jensen
  • J. R. King
  • F. R. A. J. Rose
  • S. L. Waters
Original Paper


We use a proof-of-concept experiment and two mathematical models to explore growth-induced tissue buckling, as may occur in colorectal crypt formation. Our experiment reveals how growth of a cultured epithelial monolayer on a thin flexible substrate can cause out-of-plane substrate deflections. We describe this system theoretically using a ‘bilayer’ model in which a growing cell layer adheres to a thin compressible elastic beam. We compare this with the ‘supported-monolayer’ model due to Edwards and Chapman (Bull Math Biol 69:1927–1942, 2007) for an incompressible expanding beam (representing crypt epithelium), which incorporates viscoelastic tethering to underlying stroma. We show that the bilayer model can exhibit buckling via parametric growth (in which the system passes through a sequence of equilibrium states, parameterised by the total beam length); in this case, non-uniformities in cell growth and variations in cell–substrate adhesion are predicted to have minimal effect on the shape of resulting buckled states. The supported-monolayer model reveals how competition between lateral supports and stromal adhesion influences the wavelength of buckled states (in parametric growth), and how non-equilibrium relaxation of tethering forces influences post-buckled shapes. This model also predicts that non-uniformities in growth patterns have a much weaker influence on buckled shapes than non-uniformities in material properties. Together, the experiment and models support the concept of patterning by growth-induced buckling and suggest that targeted softening of a growing cell layer provides greater control in shaping tissues than non-uniform growth.


Buckling Tissue growth Colorectal crypt Epithelium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrosi D, Mollica F (2002) On the mechanics of a growing tumour. Int J Eng Sci 40: 1297–1316MathSciNetMATHCrossRefGoogle Scholar
  2. Audoly B, Boudaoud A (2008) Buckling of a stiff film bound to a compliant substrate—Part I: formulation, linear stability of cylindrical patterns, secondary bifurcations. J Mech Phys Solids 56: 2401–2421MathSciNetMATHCrossRefGoogle Scholar
  3. Avery A, Paraskeva C, Hall P, Flanders KC, Sporn M, Moorghen M (1993) TGF-beta expression in the human colon: differential immunostaining along crypt epithelium. Brit J Cancer 68: 137CrossRefGoogle Scholar
  4. Barker N, Clevers H (2010) Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138: 1681–1696CrossRefGoogle Scholar
  5. Barker N, Van De Wetering M, Clevers H (2008) The intestinal stem cell. Genes Dev 22(14): 1856CrossRefGoogle Scholar
  6. Barry JJA, Silva MMCG, Shakesheff KA, Howdle SM, Alexander MR (2005) Using plasma deposits to promote cell population of the porous interior of three-dimensional poly(d,l-lactic acid) tissue engineering scaffolds. Adv Funct Mater 15: 1134–1140CrossRefGoogle Scholar
  7. Beauchamp RD, Sheng HM, Shao JY, Thompson EA, Ko TC (1996) Intestinal cell cycle regulation, interactions of cyclin d1, cdk4 and p21cip1. Ann Surg 223: 620–627CrossRefGoogle Scholar
  8. Begley MR, Mackin TJ (2004) Spherical indentation of freestanding circular thin films in the membrane region. J Mech Phys Solids 52: 2005–2013CrossRefGoogle Scholar
  9. Ben Amar M, Goriely A (2005) Growth and instability in elastic tissues. J Mech Phys Solids 53: 2284–2319MathSciNetMATHCrossRefGoogle Scholar
  10. Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nature 7: 349–359Google Scholar
  11. Day RM (2006) Epithelial stem cells and tissue engineered intestine. Curr Stem Cell Res Ther 1: 113–120CrossRefGoogle Scholar
  12. Dehili C, Lee P, Shakesheff KM, Alexander MR (2006) Comparison of primary rat hepatocyte attachment to collagen and plasma-polymerised allylamine on glass. Plasma Process Polym 3: 474– 484CrossRefGoogle Scholar
  13. Dervaux J, Ciarletta P, Ben Amar M (2009) Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Föppl-von Kármán limit. J Mech Phys Solids 57: 458–471MathSciNetMATHCrossRefGoogle Scholar
  14. Discher DE (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310: 1139–1143CrossRefGoogle Scholar
  15. Drasdo D (2000) Buckling instabilities of one-layered growing tissues. Phys Rev Lett 84: 4244–4247CrossRefGoogle Scholar
  16. du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Siberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci 102: 2390–2395CrossRefGoogle Scholar
  17. Dumais J (2007) Can mechanics control pattern formation in plants?. Curr Opin Plant Biol 10: 58–62CrossRefGoogle Scholar
  18. Edwards CM, Chapman SJ (2007) Biomechanical modelling of colorectal crypt budding and fission. Bull Math Biol 69: 1927–1942MathSciNetMATHCrossRefGoogle Scholar
  19. Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86: 617–628CrossRefGoogle Scholar
  20. Engler AJ, Sem S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126: 677–689CrossRefGoogle Scholar
  21. Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK (2007) Muscular thin films for building actuators and powering devices. Science 317: 1366–1370CrossRefGoogle Scholar
  22. Fozard JA, Byrne HM, Jensen OE, King JR (2010) Continuum approximation of individual-based models for multicellular systems. Math Med Biol 27: 39–74MathSciNetMATHCrossRefGoogle Scholar
  23. Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. Appl Optim 102: 1–44MathSciNetCrossRefGoogle Scholar
  24. Green PB, Steele CS, Rennich SC (1996) Phyllotactic patterns: a biophysical mechanism for their origin. Ann Bot 77: 515–527CrossRefGoogle Scholar
  25. Guo W-H, Frey MT, Burnham NA, Wang Y-L (2006) Substrate rigidity regulates the formation and maintenance of tissues. Biophys J 90: 2213–2220CrossRefGoogle Scholar
  26. Hu C, Ding Y, Chen J, Liu D, Zhang Y, Ding M, Wang G (2009) Basic fibroblast growth factor stimulates epithelial cell growth and epithelial wound healing in canine corneas. Vet Ophth 12(3): 170–175CrossRefGoogle Scholar
  27. Huang R (2005) Kinetic wrinkling of an elastic film on a viscoelastic substrate. J Mech Phys Solids 53: 68–89Google Scholar
  28. Huang R, Suo Z (2002) Wrinkling of a compressed elastic film on a viscous layer. J Appl Phys 91(3): 1135–1142CrossRefGoogle Scholar
  29. Humphrey JD (2003) Continuum biomechanics of soft biological tissues. Proc R Soc Lond A 459: 3–46MathSciNetMATHCrossRefGoogle Scholar
  30. Janmey PA, Winer JP, Murray ME, Wen Q (2009) The hard life of soft cells. Cell Motil Cytoskeleton 66: 597–605CrossRefGoogle Scholar
  31. Jones GW, Chapman SJ (2009) Modelling apical constriction in epithelia using elastic shell theory. Biomech Model MechanobiolGoogle Scholar
  32. Kierzenka J, Shampine LF (2001) A BVP solver based on residual control and the matlab PSE. ACM Trans Math Softw 27: 299–316MathSciNetMATHCrossRefGoogle Scholar
  33. Kim J-H, Kushiro K, Graham NA, Asthagiri AR (2009) Tunable interplay between epidermal growth factor and cell-cell contact governs the spatial dynamics of epithelial growth. Proc Natl Acad Sci 106: 11149–11153CrossRefGoogle Scholar
  34. Kosinski C, Li VSW, Chan ASY, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin RC, Powell DW, Yuen ST et al (2007) Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Nat Acad Sci 104(39): 15418CrossRefGoogle Scholar
  35. Lee M, Dunn JCY, Wu BM (2005) Scaffold fabrication by indirect three-dimensional printing. Biomaterials 26(20): 4281–4289CrossRefGoogle Scholar
  36. Lo C-M, Wang H-B, Dembo M, Wang Y-L (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79: 144–152CrossRefGoogle Scholar
  37. Loeffler M, Potten CS, Paulus U, Glatzer J, Chwalinski S (1988) Intestinal crypt proliferation II computer modelling of mitotic index data provides further evidence for lateral and vertical cell migration in the absence of mitotic activity. Cell Tissue Kinet 19: 647Google Scholar
  38. Loeffler M, Stein R, Wichmann HE, Potten CS, Kaur P, Chwalinski S (1986) Intestinal crypt proliferation I, a comprehensive model of steady-state proliferation in the crypt. Cell Tissue Kinet 19: 647Google Scholar
  39. Meineke FA, Potten CS, Loeffler M (2001) Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif 34: 253–266CrossRefGoogle Scholar
  40. Mizutani T, Haga H, Kawabata K (2004) Cellular stiffness response to external deformation: tensional homeostasis in a single fibroblast. Cell Motil Cytoskeleton, 59(4): 242–248CrossRefGoogle Scholar
  41. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci 102(33): 11594–11599CrossRefGoogle Scholar
  42. Odell GM, Oster G, Alberch P, Burnside B (1981) The mechanical basis of morphogenesis I Epithelial folding and invagination. Dev Biol 85: 446–462CrossRefGoogle Scholar
  43. Osborne JM, Walter A, Kershaw S, Mirams GR, Fletcher AG, Pathmanathan P, Gavaghan D, Jensen OE, Maini PK, Byrne HM (2010) A hybrid approach to multiscale modelling of cancer. Philos Trans R Soc A 368: 5013–5028MathSciNetMATHCrossRefGoogle Scholar
  44. Quaroni A, Wands J, Trelstad RL, Isselbacher KJ (1979) Epithelioid cell cultures from rat small intestine. J Cell Biol 80: 248–265CrossRefGoogle Scholar
  45. Rachev A, Stergiopuos N, Meister J-J (1998) A model for geometric and mechanical adaptation of arteries to sustained hypertension. J Biomech Eng 120: 9–17CrossRefGoogle Scholar
  46. Renehan AG, O’Dwyer ST, Haboubi NJ, Potten CS (2002) Early cellular events in colorectal carcinogenesis. Colorectal Dis 4: 76–89CrossRefGoogle Scholar
  47. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27: 455–467CrossRefGoogle Scholar
  48. Ross MH, Kaye GI, Pawlina W (2003) Histology: a text & atlas. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  49. Saez A, Anon E, Ghibaudo M, du Roure O, Di Meglio J-M, Hersen P, Silberzan P, Buguin A, Ladoux B (2010) Traction forces exerted by epithelial sheets. J Phys Condens Matter 22: 194119CrossRefGoogle Scholar
  50. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ et al (2009) Single Lgr5 stem cells build crypt villus structures in vitro without a mesenchymal niche. Nature 459(7244): 262–265CrossRefGoogle Scholar
  51. Shinbrot T (2006) Simulated morphogenesis of developmental folds due to proliferative pressure. J Theor Biol 242(3): 764–773 ISSN 0022-5193MathSciNetCrossRefGoogle Scholar
  52. Skalak R (1982) Growth as a finite displacement field. In: Proceedings of the IUTAM symposium on finite elasticity. Lehigh University, Bethlehem, PA, USA 1980Google Scholar
  53. Skalak R, Zargaryan S, Jain RK, Netti PA, Hoger A (1996) Compatibility and the genesis of residual stress by volumetric growth. J Math Biol 34(8): 889–914MATHGoogle Scholar
  54. Solon J, Levental I, Sengupta K, Georges PC, Janmey PA (2007) Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 93: 4453–4461CrossRefGoogle Scholar
  55. Steele CR (2000) Shell stability related to pattern formation in plants. J Appl Mech 67: 237–247MATHCrossRefGoogle Scholar
  56. Sultan E, Boudaoud A (2008) The buckling of a swollen thin gel layer bound to a compliant substrate. J Appl Mech 75: 051002–1–051002–5CrossRefGoogle Scholar
  57. Taber LA (1995) Biomechanics of growth, remodeling and morphogenesis. Appl Mech Rev 48: 487–545CrossRefGoogle Scholar
  58. Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120: 348–354CrossRefGoogle Scholar
  59. van Leeuwen IMM, Byrne HM, Jensen OE, King JR (2006) Crypt dynamics & colorectal cancer: advances in mathematical modelling. Cell Prolif 39: 157–181CrossRefGoogle Scholar
  60. van Leeuwen IMM, Mirams GR, Walter A, Fletcher A, Murray P, Osborne J, Varma S, Cooper J, Doyle B, Pitt-Francis J, Momtahan L, Pathmanathan P, Whiteley JP, Chapman SJ, Gavaghan DJ, Jensen OE, King JR, Maini PK, Waters SL, Byrne HM (2009) An integrative computational model for intestinal tissue renewal. Cell Prolif 42: 617–636CrossRefGoogle Scholar
  61. Viney ME, Bullock AJ, Day MJ, MacNeil S (2009) Co-culture of intestinal epithelial and stromal cells in 3D collagen-based environments. Regen Med 4(3): 397–406CrossRefGoogle Scholar
  62. Wang L, Murthy SK, Fowle WH, Barabino GA, Carrier RL (2009) Influence of micro-well biomimetic topography on intestinal epithelial Caco-2 cell phenotype. Biomaterials 30(36): 6825–6834CrossRefGoogle Scholar
  63. Wells RG, Discher DE (2008) Matrix elasticity, cytoskeletal tension, and TGF-β: the insoluble and soluble meet. Science’s STKE 1(10)Google Scholar
  64. Zelzer M, Majani R, Bradley JW, Rose FRAJ, Davies MC, Alexander MR (2008) Investigation of cell–surface interactions using chemical gradients formed from plasma polymers. Biomaterials 29: 172–184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • M. R. Nelson
    • 1
  • D. Howard
    • 2
  • O. E. Jensen
    • 1
  • J. R. King
    • 1
  • F. R. A. J. Rose
    • 2
  • S. L. Waters
    • 3
  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamUK
  2. 2.School of PharmacyUniversity of NottinghamNottinghamUK
  3. 3.OCIAMMathematical InstituteOxfordUK

Personalised recommendations