Biomechanics and Modeling in Mechanobiology

, Volume 10, Issue 6, pp 831–843 | Cite as

Prediction of fibre architecture and adaptation in diseased carotid bifurcations

  • Arthur Creane
  • Eoghan Maher
  • Sherif Sultan
  • Niamh Hynes
  • Daniel J. Kelly
  • Caitríona Lally
Original Paper


Many studies have used patient-specific finite element models to estimate the stress environment in atherosclerotic plaques, attempting to correlate the magnitude of stress to plaque vulnerability. In complex geometries, few studies have incorporated the anisotropic material response of arterial tissue. This paper presents a fibre remodelling algorithm to predict the fibre architecture, and thus anisotropic material response in four patient-specific models of the carotid bifurcation. The change in fibre architecture during disease progression and its affect on the stress environment in the plaque were predicted. The mean fibre directions were assumed to lie at an angle between the two positive principal strain directions. The angle and the degree of dispersion were assumed to depend on the ratio of principal strain values. Results were compared with experimental observations and other numerical studies. In non-branching regions of each model, the typical double helix arterial fibre pattern was predicted while at the bifurcation and in regions of plaque burden, more complex fibre architectures were found. The predicted change in fibre architecture in the arterial tissue during plaque progression was found to alter the stress environment in the plaque. This suggests that the specimen-specific anisotropic response of the tissue should be taken into account to accurately predict stresses in the plaque. Since determination of the fibre architecture in vivo is a difficult task, the system presented here provides a useful method of estimating the fibre architecture in complex arterial geometries.


Carotid bifurcation Arterial biomechanics Finite element analysis Patient-specific models Fibre architecture Atherosclerosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alastrue V, Garcia A, Pena E, Rodriguez JF, Martinez MA, Doblare M (2010) Numerical framework for patient-specific computational modelling of vascular tissue. Int J Numer Meth Bio 26(1): 35–51zbMATHCrossRefGoogle Scholar
  2. Ateshian GA (2007) Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers. J Biomech Eng 129(2): 240–249. doi: 10.1115/1.2486179 CrossRefGoogle Scholar
  3. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87(4): 1179–1187Google Scholar
  4. Creane A, Maher E, Sultan S, Hynes N, Kelly DJ, Lally C (2010) Finite element modelling of diseased carotid bifurcations generated from in vivo computerised tomographic angiography. Comput Biol Med 40(4): 419–429. doi: 10.1016/j.compbiomed.2010.02.006 CrossRefGoogle Scholar
  5. Delfino A, Stergiopulos N, Moore JE Jr, Meister JJ (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30(8): 777–786. doi: S0021929097000250 [pii]CrossRefGoogle Scholar
  6. Driessen NJB, Bouten CVC, Baaijens FPT (2005) Improved prediction of the collagen fiber architecture in the aortic heart valve. J Biomech Eng T Asme 127(2): 329–336. doi: 10.1115/1.1865187 CrossRefGoogle Scholar
  7. Driessen NJB, Cox MAJ, Bouten CVC, Baaijens FPT (2008) Remodelling of the angular collagen fiber distribution in cardiovascular tissues. Biomech Model Mechan 7(2): 93–103. doi: 10.1007/s10237-007-0078-x CrossRefGoogle Scholar
  8. Driessen NJB, Wilson W, Bouten CVC, Baaijens FPT (2004) A computational model for collagen fibre remodelling in the arterial wall. J Theor Biol 226(1): 53–64. doi: 10.1016/j.jtbi.2003.08.004 CrossRefGoogle Scholar
  9. Finlay HM, Whittaker P, Canham PB (1998) Collagen organization in the branching region of human brain arteries. Stroke 29(8): 1595–1601CrossRefGoogle Scholar
  10. Flamini V, Kerskens C, Moerman KM, Simms CK, Lally C (2010) Imaging arterial fibres using diffusion tensor imaging-feasibility study and preliminary results. Eurasip J Adv Sig Pr. doi: 10.1155/2010/904091
  11. Freed AD (2008) Anisotropy in hypoelastic soft-tissue mechanics, i: theory. J Mech Mater Struct 3(5): 911–928MathSciNetCrossRefGoogle Scholar
  12. Freed AD, Einstein DR, Vesely I (2005) Invariant formulation for dispersed transverse isotropy in aortic heart valves—an efficient means for modeling fiber splay. Biomech Model Mechan 4(2-3): 100–117. doi: 10.1007/s10237-005-0069-8 CrossRefGoogle Scholar
  13. Gao H, Long Q (2008) Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques. J Biomech 41(14): 3053–3059. doi: 10.1016/j.jbiomech.2008.07.011 CrossRefGoogle Scholar
  14. Gao H, Long Q, Graves M, Gillard JH, Li ZY (2009) Carotid arterial plaque stress analysis using fluid-structure interactive simulation based on in-vivo magnetic resonance images of four patients. J Biomech 42(10): 1416–1423. doi: 10.1016/j.jbiomech.2009.04.010 CrossRefGoogle Scholar
  15. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6): 15–35. doi: 10.1098/rsif.2005.0073 CrossRefGoogle Scholar
  16. Glagov S, Zarins C, Giddens DP, Ku DN (1988) Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 112(10): 1018–1031Google Scholar
  17. Grytz R, Meschke G (2010) A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells. Biomech Model Mechanobiol 9(2): 225–235. doi: 10.1007/s10237-009-0173-2 CrossRefGoogle Scholar
  18. Grytz R, Meschke G, Jonas JB (2010) The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech Model Mechanobiol. doi: 10.1007/s10237-010-0240-8
  19. Hardie AD, Kramer CM, Raghavan P, Baskurt E, Nandalur KR (2007) The impact of expansive arterial remodeling on clinical presentation in carotid artery disease: a multidetector ct angiography study. Am J Neuroradiol 28(6): 1067–1070. doi: 10.3174/Ajnr.A0508 CrossRefGoogle Scholar
  20. Hariton I, deBotton G, Gasser TC, Holzapfel GA (2007a) Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6(3): 163–175. doi: 10.1007/s10237-006-0049-7 CrossRefGoogle Scholar
  21. Hariton I, deBotton G, Gasser TC, Holzapfel GA (2007b) Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J Theor Biol 248(3): 460–470. doi: 10.1016/j.jtbi.2007.05.037 CrossRefGoogle Scholar
  22. Hayashi K, Mani V, Nemade A, Aguiar S, Postley JE, Fuster V, Fayad ZA (2010) Variations in atherosclerosis and remodeling patterns in aorta and carotids. J Cardiovasc Magn R 12: 10. doi: 10.1186/1532-429x-12-10 CrossRefGoogle Scholar
  23. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1–3): 1–48MathSciNetzbMATHCrossRefGoogle Scholar
  24. Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A Solids 21(3): 441–463. doi: 10.1016/s0997-7538(01)01206-2 zbMATHCrossRefGoogle Scholar
  25. Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. P Roy Soc A Math Phy 466(2118): 1551–1596. doi: 10.1098/rspa.2010.0058 MathSciNetzbMATHCrossRefGoogle Scholar
  26. Humphrey JD, Eberth JF, Dye WW, Gleason RL (2009) Fundamental role of axial stress in compensatory adaptations by arteries. J Biomech 42(1): 1–8. doi: 10.1016/j.jbiomech.2008.11.011 CrossRefGoogle Scholar
  27. Kingsley PB (2006) Introduction to diffusion tensor imaging mathematics: part i. Tensors, rotations, and eigenvectors. Concepts Magn Reson Part A 28A(2): 101–122. doi: 10.1002/cmr.a.20048 CrossRefGoogle Scholar
  28. Kiousis DE, Rubinigg SF, Auer M, Holzapfel GA (2009) A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example. J Biomech Eng 131(12): 121002. doi: 10.1115/1.4000078 CrossRefGoogle Scholar
  29. Kuhl E, Holzapfel GA (2007) A continuum model for remodeling in living structures. J Mater Sci 42(21): 8811–8823. doi: 10.1007/s10853-007-1917-y CrossRefGoogle Scholar
  30. Li ZY, Howarth S, Trivedi RA, JM UK-I, Graves MJ, Brown A, Wang L, Gillard JH (2006) Stress analysis of carotid plaque rupture based on in vivo high resolution mri. J Biomech 39(14): 2611–2622. doi: 10.1016/j.jbiomech.2005.08.022 CrossRefGoogle Scholar
  31. Li ZY, Howarth SP, Tang T, Graves MJ, J UK-I, Trivedi RA, Kirkpatrick PJ, Gillard JH (2007) Structural analysis and magnetic resonance imaging predict plaque vulnerability: a study comparing symptomatic and asymptomatic individuals. J Vasc Surg 45(4): 768–775. doi: 10.1016/j.jvs.2006.12.065 CrossRefGoogle Scholar
  32. Maher E, Creane A, Sultan S, Hynes N, Lally C, Kelly DJ (2009) Tensile and compressive properties of fresh human carotid atherosclerotic plaques. J Biomech 42(16): 2760–2767. doi: 10.1016/j.jbiomech.2009.07.032 CrossRefGoogle Scholar
  33. Miehe C (1996) Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput Method Appl M 134(3–4): 223–240zbMATHCrossRefGoogle Scholar
  34. Mortier P, Holzapfel GA, De Beule M, Van Loo D, Taeymans Y, Segers P, Verdonck P, Verhegghe B (2010) A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann Biomed Eng 38(1): 88–99. doi: 10.1007/s10439-009-9836-5 CrossRefGoogle Scholar
  35. Nagel T, Kelly DJ (2010) Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair. Biomech Model Mech 9(3): 359–372. doi: 10.1007/s10237-009-0182-1 CrossRefGoogle Scholar
  36. O’Connell MK, Murthy S, Phan S, Xu C, Buchanan J, Spilker R, Dalman RL, Zarins CK, Denk W, Taylor CA (2008) The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3d confocal and electron microscopy imaging. Matrix Biol 27(3): 171–181. doi: 10.1016/j.matbio.2007.10.008 CrossRefGoogle Scholar
  37. Patel DJ, Janicki JS, Carew TE (1969) Static anisotropic elastic properties of aorta in living dogs. Circ Res 25(6): 765–779Google Scholar
  38. Pierce DM, Trobin W, Raya JG, Trattnig S, Bischof H, Glaser C, Holzapfel GA (2010) Dt-mri based computation of collagen fiber deformation in human articular cartilage: a feasibility study. Ann Biomed Eng 38(7): 2447–2463. doi: 10.1007/s10439-010-9990-9 CrossRefGoogle Scholar
  39. Rhodin JAG (1980) Architecture of the vessel wall. In: Sparks HV, Bohr DF, Somlyo AD, Geiger SR (eds) Handbook of physiology, the cardiovascular system. American Physiological Society, Bethesda, pp 1–31Google Scholar
  40. Rodriguez JF, Ruiz C, Doblare M, Holzapfel GA (2008) Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J Biomech Eng 130(2): 021023. doi: 10.1115/1.2898830 CrossRefGoogle Scholar
  41. Rowe AJ, Finlay HM, Canham PB (2003) Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy. J Vasc Res 40(4): 406–415. doi: 10.1159/000072831 CrossRefGoogle Scholar
  42. Sun W, Chaikof EL, Levenston ME (2008) Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models. J Biomech Eng 130(6): 061003. doi: 10.1115/1.2979872 CrossRefGoogle Scholar
  43. Taber LA, Humphrey JD (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biomech Eng 123(6): 528–535CrossRefGoogle Scholar
  44. Tang D, Yang C, Mondal S, Liu F, Canton G, Hatsukami TS, Yuan C (2008) A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo mri-based 2d/3d fsi models. J Biomech 41(4): 727–736. doi: 10.1016/j.jbiomech.2007.11.026 CrossRefGoogle Scholar
  45. Wilson W, Driessen NJ, van Donkelaar CC, Ito K (2006) Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthr Cartil 14(11): 1196–1202. doi: 10.1016/j.joca.2006.05.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Arthur Creane
    • 1
  • Eoghan Maher
    • 2
  • Sherif Sultan
    • 3
    • 4
  • Niamh Hynes
    • 3
    • 4
  • Daniel J. Kelly
    • 2
  • Caitríona Lally
    • 1
    • 2
  1. 1.School of Mechanical and Manufacturing EngineeringDublin City UniversityDublin 9Ireland
  2. 2.Trinity Centre for Bioengineering, School of EngineeringTrinity CollegeDublin 2Ireland
  3. 3.Western Vascular Institute, Department of Vascular & Endovascular SurgeryUniversity College Hospital GalwayGalwayIreland
  4. 4.Department of Vascular and Endovascular SurgeryGalway ClinicGalwayIreland

Personalised recommendations