Biomechanics and Modeling in Mechanobiology

, Volume 10, Issue 6, pp 799–811

Computational modeling of growth: systemic and pulmonary hypertension in the heart

  • M. K. Rausch
  • A. Dam
  • S. Göktepe
  • O. J. Abilez
  • E. Kuhl
Original Paper

Abstract

We introduce a novel constitutive model for growing soft biological tissue and study its performance in two characteristic cases of mechanically induced wall thickening of the heart. We adopt the concept of an incompatible growth configuration introducing the multiplicative decomposition of the deformation gradient into an elastic and a growth part. The key feature of the model is the definition of the evolution equation for the growth tensor which we motivate by pressure-overload-induced sarcomerogenesis. In response to the deposition of sarcomere units on the molecular level, the individual heart muscle cells increase in diameter, and the wall of the heart becomes progressively thicker. We present the underlying constitutive equations and their algorithmic implementation within an implicit nonlinear finite element framework. To demonstrate the features of the proposed approach, we study two classical growth phenomena in the heart: left and right ventricular wall thickening in response to systemic and pulmonary hypertension.

Keywords

Biomechanics Growth Remodeling Finite elements Hypertension Hypertrophy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alastrue V, Martinez MA, Doblare M (2009) Modelling adaptative volumetric finite growth in patient-specific residually tressed arteries. J Biomech 41: 1773–1781CrossRefGoogle Scholar
  2. Ambrosi D, Mollica F (2002) On the mechanics of a growing tumor. Int J Eng Sci 40: 1297–1316MathSciNetMATHCrossRefGoogle Scholar
  3. Ben Amar M, Goriely A (2005) Growth and instability in elastic tissues. J Mech Phys Solids 53: 2284–2319MathSciNetMATHCrossRefGoogle Scholar
  4. Berne RM, Levy MN (2001) Cardiovascular Physiology. The Mosby Monograph SeriesGoogle Scholar
  5. Böl M, Reese S, Parker KK, Kuhl E (2009) Computational modeling of muscular thin films for cardiac repair. Comp Mech 43: 535– 544CrossRefGoogle Scholar
  6. Dokos S, Smaill BH, Young AA, LeGrice IJ (2002) Shear properties of passive ventricular myocardium. Am J Physiol Heart Circ Physiol 283: H2650–H2659Google Scholar
  7. Emmanouilides GC, Riemenschneider RA, Allen HD, Gutgesell HP (1994) Moss and Adams’ heart disease in infants, children, and adolescents, 5th edn. Lippincott Williams & Wilkins, PennsylvaniaGoogle Scholar
  8. Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16: 951–978MATHCrossRefGoogle Scholar
  9. Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S (2004) A continuum treatment of growth in biological tissue: The coupling of mass transport and mechanics. J Mech Phys Solids 52: 1595–1625MathSciNetMATHCrossRefGoogle Scholar
  10. Garikipati K (2009) The kinematics of biological growth. Appl Mech Rev 62: 030801-1–030801-7CrossRefGoogle Scholar
  11. Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, Malec KB, Mc Keown PP, Schocken DD (1992) Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86: 426–430Google Scholar
  12. Göktepe S, Kuhl E (2009) Computational modeling of cardiac electrophysiology: a novel finite element approach. Int J Num Meth Eng 79: 156–178MATHCrossRefGoogle Scholar
  13. Göktepe S, Kuhl E (2010a) Electromechanics of cardiac tissue: a unified approach to the fully coupled excitation-contraction problem. Comp Mech 45: 227–243MATHCrossRefGoogle Scholar
  14. Göktepe S, Acharya SNS, Wong J, Kuhl E (2010b) Computational modeling of passive myocardium. Int J Num Meth Biomed Eng. doi:10.1002/cnm.1402
  15. Göktepe S, Abilez OJ, Parker KK, Kuhl E (2010c) A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Bio 265: 433–442CrossRefGoogle Scholar
  16. Göktepe S, Abilez OJ, Kuhl E (2010d) A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J Mech Phys Solids 58: 1661–1680MathSciNetMATHCrossRefGoogle Scholar
  17. Göktepe S, Wong J, Kuhl E (2010e) Atrial and ventricular fibrillation: computational simulation of spiral waves in cardiac tissue. Arch Appl Mech 80: 569–580CrossRefGoogle Scholar
  18. Guccione JM, McCulloch AD (1993) Mechanics of active contraction in cardiac muscle: Part I. Constitutive relations for active fiber stress that describe deactiveation. J Biomech Eng 115: 72–81CrossRefGoogle Scholar
  19. Guccione JM, Moonly SM, Moustakidis P, Costa KD, Moutlon MJ, Ratcliffe MB, Pasque MK (2001) Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysms: a finite element study. Ann Thorac Surg 71: 654–662CrossRefGoogle Scholar
  20. Haddad F, Doyle R, Murphy DJ, Hunt SA (2008) Right ventricular function in cardiovascular disease. Part II. Pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117: 1717–1731CrossRefGoogle Scholar
  21. Han MK, McLaughlin VV, Criner GJ, Martinez FJ (2007) Pulmonary diseases and the heart. Circulation 116: 2992–3005CrossRefGoogle Scholar
  22. Harrington KB, Rodriguez F, Cheng A, Langer F, Ashikaga H, Daughters GT, Criscione JC, Ingels NB, Miller DC (2005) Direct measurement of transmural laminar architecture in the anterolateral wall of the ovine left ventricle: new implications for wall thickening mechanisms. Am J Physiol Heart Circ Physiol 228: H1324–H1330Google Scholar
  23. Himpel G, Kuhl E, Menzel A, Steinmann P (2005) Computational modeling of isotropic multiplicative growth. Comp Mod Eng Sci 8: 119–134MATHGoogle Scholar
  24. Himpel G, Menzel A, Kuhl E, Steinmann P (2008) Time-dependent fibre reorientation of transversely isotropic continua—finite element formulation and consistent linearization. Int J Num Meth Eng 73: 1413–1433MathSciNetMATHCrossRefGoogle Scholar
  25. Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium. A structurally-based framework for material characterization. Phil Trans R Soc London A 367: 3445–3475MathSciNetMATHCrossRefGoogle Scholar
  26. Humphrey JD (2008) Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem Biophys 50: 53–78CrossRefGoogle Scholar
  27. Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Mod Meth Appl Sci 12: 407–430MathSciNetMATHCrossRefGoogle Scholar
  28. Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. New England J Med 341: 1276–1283CrossRefGoogle Scholar
  29. Itoh A, Krishnamurthy G, Swanson J, Ennis D, Bothe W, Kuhl E, Karlsson M, Davis L, Miller DC, Ingels NB (2009) Active stiffening of mitral valve leaflets in the beating heart. Am J Physiol Heart Circ Physiol 296: 1766–1773CrossRefGoogle Scholar
  30. Kotikanyadanam M, Göktepe S, Kuhl E (2010) Computational modeling of electrocardiograms: a finite element approach towards cardiac excitation. Int J Num Meth Biomed Eng 26: 524–533MATHGoogle Scholar
  31. Krishnamurthy G, Itoh A, Swanson J, Bothe W, Karlsson M, Kuhl E, Miller DC, Ingels NB (2009) Regional stiffening of the mitral valve anterior leaflet in the beating heart. J Biomech 42: 2697–2701CrossRefGoogle Scholar
  32. Kroon W, Delhaas T, Arts T, Bovendeerd P (2009) Computational modeling of volumetric soft tissue growth: application to the cardiac left ventricle. Biomech Model Mechanobio 8: 309–310Google Scholar
  33. Kuhl E, Steinmann P (2003) Mass- and volume specific views on thermodynamics for open systems. Proc Royal Soc 459: 2547–2568MathSciNetMATHCrossRefGoogle Scholar
  34. Kuhl E, Steinmann P (2003) On spatial and material settings of thermohyperelstodynamics for open systems. Acta Mech 160: 179–217MATHCrossRefGoogle Scholar
  35. Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth—a critical review, a classification of concepts and two new consistent approaches. Comp Mech 32: 71–88MATHCrossRefGoogle Scholar
  36. Kuhl E, Garikipati K, Arruda EM, Grosh K (2005) Remodeling of biological tissue: mechanically induced reorientation of a transversely isotropic chain network. J Mech Phys Solids 53: 1552–1573MathSciNetMATHCrossRefGoogle Scholar
  37. Kuhl E, Holzapfel GA (2007) A continuum model for remodeling in living structures. J Mat Sci 2: 8811–8823CrossRefGoogle Scholar
  38. Kuhl E, Maas R, Himpel G, Menzel A (2007) Computational modeling of arterial wall growth: attempts towards patient-specific simulations based on computer tomography. Biomech Mod Mechanobio 6: 321–331CrossRefGoogle Scholar
  39. Kumar V, Abbas AK, Fausto N (2005) Robbins and Cotran pathologic basis of disease. Elsevier Saunders, AmsterdamGoogle Scholar
  40. Lee EH (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36: 1–6MATHCrossRefGoogle Scholar
  41. Libby P, Bonow RO, Mann DL, Zipes DP (2007) Braunwald’s heart disease. Saunders, PhiladeiphiaGoogle Scholar
  42. Lubarda A, Hoger A (2002) On the mechanics of solids with a growing mass. Int J Solids Struct 39: 4627–4664MATHCrossRefGoogle Scholar
  43. Maron BJ, McKenna WJ (2003) American college of cardiology/European society of cardiology: clinical expert consensus document on hypertrophy cardiomyopathy. J Am College Cardiol 42: 1687–1713CrossRefGoogle Scholar
  44. Menzel A (2005) Modelling of anisotropic growth in biological tissues—A new approach and computational aspects. Biomech Model Mechanobiol 3: 147–171CrossRefGoogle Scholar
  45. Opie LH (2003) Heart physiology: from cell to circulation. Lippincott Williams & Wilkins, PennsylvaniaGoogle Scholar
  46. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27: 455–467CrossRefGoogle Scholar
  47. Russel B, Curtis MW, Koshman YE, Samarel AM (2010) Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width. J Mol Cell Card 48: 817–823CrossRefGoogle Scholar
  48. Sawada K, Kawamura K (1991) Architecture of myocardial cells in human cardiac ventricles with concentric and eccentric hypertrophy as demonstrated by quantitative scanning electron microscopy. Heart Vessels 6: 129–142CrossRefGoogle Scholar
  49. Schmid H, Pauli L, Paulus A, Kuhl E, Itskov M (2010) How to utilise the kinematic constraint of incompressibility for modelling adaptation of soft tissues. Comp Meth Biomech Biomed Eng, accepted for publicationGoogle Scholar
  50. Taber LA (1995) Biomechanics of growth, remodeling and morphogenesis. Appl Mech Rev 48: 487–545CrossRefGoogle Scholar
  51. Taber LA, Humphrey JD (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biomech Eng 123: 528–535CrossRefGoogle Scholar
  52. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, Dupuis J, Long CS, Rubin LJ, Smart FW, Suzuki YJ, Gladwin M, Denholm EM, Gail DB (2006) Right ventricular function and failure. Report of a National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure. Circulation 114: 1883–1891CrossRefGoogle Scholar
  53. Weitzenblum E (2003) Chronic cor pulmonale. Heart 89: 225–230CrossRefGoogle Scholar
  54. Yin FC, Chan CC, Judd RM (1996) Compressibility of perfused passive myocardium. Am J Physiol Heart Circ Physiol 271: H1864–H1870Google Scholar
  55. Yoshida M, Sho E, Nanjo H, Takahashi M, Kobayashi M, Kawamura K, Honma M, Komatsu M, Sugita A, Yamauchi M, Hosoi T, Ito Y, Masuda H (2010) Weaving hypothesis of cardiomyocyte sarcomeres. Am J Pathol 176: 660–678CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • M. K. Rausch
    • 1
  • A. Dam
    • 1
  • S. Göktepe
    • 2
  • O. J. Abilez
    • 3
  • E. Kuhl
    • 4
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Civil EngineeringMiddle East Technical UniversityAnkaraTurkey
  3. 3.Departments of Bioengineering and SurgeryStanford UniversityStanfordUSA
  4. 4.Departments of Mechanical Engineering, Bioengineering, and Cardiothoracic SurgeryStanford UniversityStanfordUSA

Personalised recommendations