Biomechanics and Modeling in Mechanobiology

, Volume 10, Issue 4, pp 445–459

A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes

Original Paper

Abstract

A novel finite element approach is presented to simulate the mechanical behavior of human red blood cells (RBC, erythrocytes). As the RBC membrane comprises a phospholipid bilayer with an intervening protein network, we propose to model the membrane with two distinct layers. The fairly complex characteristics of the very thin lipid bilayer are represented by special incompressible solid shell elements and an anisotropic viscoelastic constitutive model. Properties of the protein network are modeled with an isotropic hyperelastic third-order material. The elastic behavior of the model is validated with existing optical tweezers studies with quasi-static deformations. Employing material parameters consistent with literature, simulation results are in excellent agreement with experimental data. Available models in literature neglect either the surface area conservation of the RBC membrane or realistic loading conditions of the optical tweezers experiments. The importance of these modeling assumptions, that are both included in this study, are discussed and their influence quantified. For the simulation of the dynamic motion of RBC, the model is extended to incorporate the cytoplasm. This is realized with a monolithic fully coupled fluid-structure interaction simulation, where the fluid is described by the incompressible Navier–Stokes equations in an arbitrary Lagrangian Eulerian framework. It is shown that both membrane viscosity and cytoplasm viscosity have significant influence on simulation results. Characteristic recovery times and energy dissipation for varying strain rates in dynamic laser trap experiments are calculated for the first time and are found to be comparable with experimental data.

Keywords

Red blood cells Finite elements Cell membrane Laser traps Fluid-structure interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boey SK, Boal DH, Discher DE (1998) Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys J 75: 1573–1583CrossRefGoogle Scholar
  2. Bornemann PB, Wall WA (2009) An incompressible solid-shell element for finite deformations in statics, internal reportGoogle Scholar
  3. Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26: 61–81CrossRefGoogle Scholar
  4. Chee CY, Lee HP, Lu C (2008) Using 3d fluid-structure interaction model to analyse the biomechanical properties of erythrocyte. Phys Lett A 372: 1357–1362CrossRefGoogle Scholar
  5. Chien S, Sung KL, Skalak R, Usami S, Tozeren A (1978) Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys J 24: 463–487CrossRefGoogle Scholar
  6. Dao M, Lim CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51: 2259–2280CrossRefGoogle Scholar
  7. Dao M, Li J, Suresh S (2006) Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mat Sci Eng C 26: 1232–1244CrossRefGoogle Scholar
  8. Deuling HJ, Helfrich W (1976) Red blood cell shapes as explained on the basis of curvature elasticity. Biophys J 16: 861–868CrossRefGoogle Scholar
  9. Discher DE, Mohandas N, Evans EA (1994) Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266(5187): 1032–1035CrossRefGoogle Scholar
  10. Discher DE, Mohandas N (1996) Kinematics of red cell aspiration by fluorescence-imaged microdeformation. Biophys J 71: 1680–1694CrossRefGoogle Scholar
  11. Discher DE, Boal DH, Boey SK (1998) Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys J 75: 1584–1597CrossRefGoogle Scholar
  12. Dohrmann CR, Bochev PB (2004) A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int J Numer Meth Fluid 46: 183–201MATHCrossRefMathSciNetGoogle Scholar
  13. Eggleton CD, Popel AS (1998) Large deformation of red blood cell ghosts in a simple shear flow. Phys Fluids 10: 1834–1845, AIPCrossRefGoogle Scholar
  14. Evans EA, Fung Y-C (1972) Improved measurements of the erythrocyte geometry. Microvasc Res 4: 335–347CrossRefGoogle Scholar
  15. Feng F, Klug WS (2006) Finite element modeling of lipid bilayer membranes. J Comput Phys 220: 394–408MATHCrossRefMathSciNetGoogle Scholar
  16. Fischer TM (2004) Shape memory of human red blood cells. Biophys J 86: 3304–3313CrossRefGoogle Scholar
  17. Förster C, Wall WA, Ramm E (2006) On the geometric conservation law in transient flow calculations on deforming domains. Int J Numer Meth Fluid 50: 1369–1379MATHCrossRefGoogle Scholar
  18. Förster C, Wall WA, Ramm E (2009) Stabilized finite element formulation for incompressible flow on distorted meshes. Int J Numer Meth Fluid 60: 1103–1126MATHCrossRefGoogle Scholar
  19. Gee M, Küttler U, Wall WA (2010) Truly monolithic algebraic multigrid for fluid-structure interaction. Int J Numer Meth Eng (accepted)Google Scholar
  20. Gompper G (2004) Fluid vesicles with viscous membranes in shear flow. Phys Rev Lett 93:258102, American Physical SocietyCrossRefGoogle Scholar
  21. Gov NS, Safran SA (2005) Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. Biophys J 88(3): 1859–1874CrossRefGoogle Scholar
  22. Hansen JC, Skalak R, Chien S, Hoger A (1996) An elastic network model based on the structure of the red blood cell membrane skeleton. Biophys J 70: 146–166CrossRefGoogle Scholar
  23. Hartmann D (2010) A multiscale model for red blood cell mechanics. Biomech Model Mechanobiol 9: 1–17CrossRefGoogle Scholar
  24. Heinrich V, Svetina S, Zeks B (1993) Nonaxisymmetric vesicle shapes in a generalized bilayer-couple model and the transition between oblate and prolate axisymmetric shapes. Phys Rev E 48: 3112CrossRefGoogle Scholar
  25. Heinrich V, Ritchie K, Mohandas N, Evans EA (2001) Elastic thickness compressibility of the red cell membrane. Biophys J 81: 1452–1463CrossRefGoogle Scholar
  26. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28C: 693–703Google Scholar
  27. Henon S, Lenormand G, Richert A, Gallet F (1999) A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J 76: 1145–1151CrossRefGoogle Scholar
  28. Hochmuth RM (1993) Measuring the mechanical properties of individual human blood cells. J Biomech Eng 115: 515–519, ASMECrossRefGoogle Scholar
  29. Hochmuth RM, Worthy PR, Evans EA (1979) Red cell extensional recovery and the determination of membrane viscosity. Biophys J 26: 101–114CrossRefGoogle Scholar
  30. Holzapfel G (2000) Nonlinear solid mechanics. A continuum approach for engineering. Wiley, Chichester, UKMATHGoogle Scholar
  31. Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Meth Appl Mech Eng 190: 4379–4403CrossRefGoogle Scholar
  32. Khairy K, Foo JJ, Howard J (2008) Shapes of red blood cells: comparison of 3d confocal images with the bilayer-couple model. Cell Mol Bioeng 1: 173–181CrossRefGoogle Scholar
  33. Küttler U, Förster C, Wall WA (2006) A solution for the incompressibility dilemma in partitioned fluid-structure interaction with pure dirichlet fluid domains. Comput Mech 38: 417–429MATHCrossRefGoogle Scholar
  34. Küttler U, Gee M, Förster Ch, Comerford A, Wall WA (2010) Coupling strategies for biomedical fluid-structure interaction problems. Int J Numer Meth Biomed Eng 26: 305–321MATHCrossRefGoogle Scholar
  35. Le DV, White J, Peraire J, Lim KM, Khoo BC (2009) An implicit immersed boundary method for three-dimensional fluid-membrane interactions. J Comput Phys 228: 8427–8445MATHCrossRefMathSciNetGoogle Scholar
  36. Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys J 88: 3707–3719CrossRefGoogle Scholar
  37. Lim CT, Dao M, Suresh S, Sow CH, Chew KT (2004) Large deformation of living cells using laser traps. Acta Mater 52: 1837–1845CrossRefGoogle Scholar
  38. McClain BL, Finkelstein IJ, Fayer MD (2004) Vibrational echo experiments on red blood cells: comparison of the dynamics of cytoplasmic and aqueous hemoglobin. Chem Phys Lett 392: 324–329CrossRefGoogle Scholar
  39. Mills JP, Qie L, Dao M, Lim CT, Suresh S (2004) Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech Chem Biosyst 1: 169–180Google Scholar
  40. Noguchi H, Gompper G (2005) Dynamics of fluid vesicles in shear flow: effect of membrane viscosity and thermal fluctuations. Phys Rev E 72: 011901–011914, APSCrossRefGoogle Scholar
  41. Pozrikidis C (2003) Numerical simulation of the flow-induced deformation of red blood cells. Ann Biomed Eng 31: 1194–1205CrossRefGoogle Scholar
  42. Puig-de-Morales-Marinkovic M, Turner KT, Butler JP, Fredberg JJ, Suresh S (2007) Viscoelasticity of the human red blood cell. Am J Physiol Cell Physiol 293: C597–605CrossRefGoogle Scholar
  43. Svetina S, Zeks B (1989) Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur Biophys J 17: 101–111CrossRefGoogle Scholar
  44. Tran-Son-Tay R, Sutera SP, Rao PR (1984) Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion. Biophys J 46: 65–72CrossRefGoogle Scholar
  45. Vu-Quoc L, Tan XG (2003) Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Comput Meth Appl Mech Eng 192: 975–1016MATHCrossRefGoogle Scholar
  46. Yeoh OH (1990) Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Tech 63: 792–805CrossRefGoogle Scholar
  47. Yoon Y-Z, Kotar J, Yoon G, Cicuta P (2008) The nonlinear mechanical response of the red blood cell. Phys Biol 5: 036007CrossRefGoogle Scholar
  48. Zhou H, Pozrikidis C (1995) Deformation of liquid capsules with incompressible interfaces in simple shear flow. J Fluid Mech 283: 175–200MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute for Computational Mechanics, Technische Universität MünchenGarchingGermany

Personalised recommendations