Biomechanics and Modeling in Mechanobiology

, Volume 10, Issue 2, pp 269–279 | Cite as

Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage

  • Mark C. van TurnhoutEmail author
  • Sander Kranenbarg
  • Johan L. van Leeuwen
Open Access
Short Communication


The collagen fibril network is an important factor for the depth-dependent mechanical behaviour of adult articular cartilage (AC). Recent studies show that collagen orientation is parallel to the articular surface throughout the tissue depth in perinatal animals, and that the collagen orientations transform to a depth-dependent arcade-like structure in adult animals. Current understanding on the mechanobiology of postnatal AC development is incomplete. In the current paper, we investigate the contribution of collagen fibril orientation changes to the depth-dependent mechanical properties of AC. We use a composition-based finite element model to simulate in a 1-D confined compression geometry the effects of ten different collagen orientation patterns that were measured in developing sheep. In initial postnatal life, AC is mostly subject to growth and we observe only small changes in depth-dependent mechanical behaviour. Functional adaptation of depth-dependent mechanical behaviour of AC takes place in the second half of life before puberty. Changes in fibril orientation alone increase cartilage stiffness during development through the modulation of swelling strains and osmotic pressures. Changes in stiffness are most pronounced for small stresses and for cartilage adjacent to the bone. We hypothesize that postnatal changes in collagen fibril orientation induce mechanical effects that in turn promote these changes. We further hypothesize that a part of the depth-dependent postnatal increase in collagen content in literature is initiated by the depth-dependent postnatal increase in fibril strain due to collagen fibril reorientation.


Articular cartilage Collagen network Development Depth-dependent properties Fibril reinforced poroviscoelastic swelling model 



The authors are grateful to Dr.Wouter Wilson and Dr. René van Donkelaar at the Materials Technology group of the Faculty of Biomedical Engineering of Eindhoven University of Technology for the use of, and support with, the FRPVS model.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. Ateshian GA (2009) The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech. doi: 10.1016/j.jbiomech.2009.04.040
  2. Ateshian GA, Rajan V, Chahine NO, Canal CE, Hung CT (2009) Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng 131(6): 061,003. doi: 10.1115/1.3118773 CrossRefGoogle Scholar
  3. Aydelotte MB, Kuettner KE (1988) Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect Tissue Res 18(3): 205–222CrossRefGoogle Scholar
  4. Aydelotte MB, Greenhill RR, Kuettner KE (1988) Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect Tissue Res 18(3): 223–234CrossRefGoogle Scholar
  5. Bank RA, Soudry M, Maroudas A, Mizrahi J, TeKoppele JM (2000) The increased swelling and instantaneous deformation of osteoarthritic cartilage is highly correlated with collagen degradation. Arthritis Rheum 43(10): 2202–2210. doi: 3.0.CO;2-E CrossRefGoogle Scholar
  6. Basser PJ, Schneiderman R, Bank RA, Wachtel E, Maroudas A (1998) Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch Biochem Biophys 351(2): 207–219. doi: 10.1006/abbi.1997.0507 CrossRefGoogle Scholar
  7. Benninghoff A (1925) Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. Zweiter Teil: Der Aufbau des Gelenkknorpels in seinen Beziehungen zur Funktion. Z Zellforsch Mikrosk Anat 2: 783–862CrossRefGoogle Scholar
  8. Brommer H, Brama P, Laasanen M, Helminen H, Van Weeren P, Jurvelin J (2005) Functional adaptation of articular cartilage from birth to maturity under the influence of loading: a biomechanical analysis. Equine Vet J 37(2): 148–154CrossRefGoogle Scholar
  9. Buckley MR, Gleghorn JP, Bonassar LJ, Cohen I (2008) Mapping the depth dependence of shear properties in articular cartilage. J Biomech 41(11): 2430–2437. doi: 10.1016/j.jbiomech.2008.05.021 CrossRefGoogle Scholar
  10. Buckley MR, Bergou AJ, Fouchard J, Bonassar LJ, Cohen I (2009) High-resolution spatial mapping of shear properties in cartilage. J Biomech. doi: 10.1016/j.jbiomech.2009.10.012
  11. Chahine N, Ateshian G, Hung C (2007) The effect of finite compressive strain on chondrocyte viability in statically loaded bovine articular cartilage. Biomech Model Mechanobiol 6(1–2): 103–111. doi: 10.1007/s10237-006-0041-2 CrossRefGoogle Scholar
  12. Chen A, Bae W, Schinagl R, Sah R (2001a) Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression. J Biomech 34(1): 1–12. doi: 10.1016/S0021-9290(00)00170-6 CrossRefGoogle Scholar
  13. Chen S, Falcovitz Y, Schneiderman R, Maroudas A, Sah R (2001b) Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density. Osteoarthritis Cartilage 9(6): 561–569. doi: 10.1053/joca.2001.0424 CrossRefGoogle Scholar
  14. Choi JB, Youn I, Cao L, Leddy HA, Gilchrist CL, Setton LA, Guilak F (2007) Zonal changes in the three-dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage. J Biomech 40(12): 2596–2603. doi: 10.1016/j.jbiomech.2007.01.009 CrossRefGoogle Scholar
  15. Erne OK, Reid JB, Ehmke LW, Sommers MB, Madey SM, Bottlang M (2005) Depth-dependent strain of patellofemoral articular cartilage in unconfined compression. J Biomech 38(4): 667–672. doi: 10.1016/j.jbiomech.2004.04.005 CrossRefGoogle Scholar
  16. Federico S, Herzog W (2008a) On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech Model Mechanobiol 7(5): 367–378. doi: 10.1007/s10237-007-0091-0 CrossRefGoogle Scholar
  17. Federico S, Herzog W (2008b) On the permeability of fibre-reinforced porous materials. Int J Solids Struct 45(7–8): 2160–2172. doi: 10.1016/j.ijsolstr.2007.11.014 CrossRefzbMATHGoogle Scholar
  18. Gründer W (2006) MRI assessment of cartilage ultrastructure. NMR Biomed 19(7):855–876. doi: 10.1002/nbm.1092 CrossRefGoogle Scholar
  19. Guilak F, Ratcliffe A, Mow VC (1995) Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J Orthop Res 13(3): 410–421. doi: 10.1002/jor.1100130315 CrossRefGoogle Scholar
  20. Hughes L, Archer C, Ap Gwynn I (2005) The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review. Eur Cell Mater 9: 68–84Google Scholar
  21. Hunziker E, Kapfinger E, Geiss J (2007a) Corrigendum to “The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development” [Osteoarthritis Cartilage 15(2007) 403–413]. Osteoarthritis Cartilage doi: 10.1016/j.joca.2007.06.001
  22. Hunziker E, Kapfinger E, Geiss J (2007b) The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis Cartilage 15(4):403–413. doi: 10.1016/j.joca.2006.09.010, corrigendum in Hunziker et al. (2007a)Google Scholar
  23. Julkunen P, Kiviranta P, Wilson W, Jurvelin JS, Korhonen RK (2007) Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. J Biomech 40(8): 1862–1870. doi: 10.1016/j.jbiomech.2006.07.026 CrossRefGoogle Scholar
  24. Julkunen P, Korhonen R, Nissi M, Jurvelin J (2008a) Mechanical characterization of articular cartilage by combining magnetic resonance imaging and finite-element analysis: a potential functional imaging technique. Phys Med Biol 53(9): 2425–2438. doi: 10.1088/0031-9155/53/9/014 CrossRefGoogle Scholar
  25. Julkunen P, Wilson W, Jurvelin JS, Rieppo J, Qu CJ, Lammi MJ, Korhonen RK (2008b) Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. J Biomech 41(9): 1978–1986. doi: 10.1016/j.jbiomech.2008.03.026 CrossRefGoogle Scholar
  26. Julkunen P, Harjula T, Iivarinen J, Marjanen J, Seppänen K, Närhi T, Arokoski J, Lammi MJ, Brama P, Jurvelin J, Helminen H (2009a) Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage. Osteoarthritis Cartilage 17(12): 1628–1638. doi: 10.1016/j.joca.2009.07.002 CrossRefGoogle Scholar
  27. Julkunen P, Jurvelin JS, Isaksson H (2009b) Contribution of tissue composition and structure to mechanical response of articular cartilage under different loading geometries and strain rates. Biomech Model Mechanobiol. doi: 10.1007/s10237-009-0169-y
  28. Julkunen P, Iivarinen J, Brama P, Arokoski J, Jurvelin J, Helminen H (2010) Maturation of collagen fibril network structure in tibial and femoral cartilage of rabbits. Osteoarthritis & Cartilage 18(3): 406–415. doi: 10.1016/j.joca.2009.11.007 CrossRefGoogle Scholar
  29. Klein TJ, Chaudhry M, Bae WC, Sah RL (2007) Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage. J Biomech 40(1): 182–190. doi: 10.1016/j.jbiomech.2005.11.002 CrossRefGoogle Scholar
  30. Korhonen R, Laasanen M, Töyräs J, Rieppo J, Hirvonen J, Helminen H, Jurvelin J (2002) Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech 35(7): 903–909. doi: 10.1016/S0021-9290(02)00052-0 CrossRefGoogle Scholar
  31. Korhonen RK, Herzog W (2008) Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics. J Biomech 41(2): 480–485. doi: 10.1016/j.jbiomech.2007.09.002 CrossRefGoogle Scholar
  32. Korhonen RK, Laasanen MS, Töyräs J, Lappalainen R, Helminen HJ, Jurvelin JS (2003) Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J Biomech 36(9): 1373–1379. doi: S0021-9290(03)00069-1 CrossRefGoogle Scholar
  33. Krishnan R, Park S, Eckstein F, Ateshian GA (2003) Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress. J Biomech Engin 125(5): 569–577. doi: 10.1115/1.1610018 CrossRefGoogle Scholar
  34. Laasanen M, Töyräs J, Korhonen R, Rieppo J, Saarakkala S, Nieminen M, Hirvonen J, Jurvelin J (2003) Biomechanical properties of knee articular cartilage. Biorheology 40(1–3): 133–140Google Scholar
  35. Li L, Buschmann M, Shirazi-Adl A (2002a) The role of fibril reinforcement in the mechanical behavior of cartilage. Biorheology 39(1–2): 89–96Google Scholar
  36. Li L, Shirazi-Adl A, Buschmann M (2002b) Alterations in mechanical behaviour of articular cartilage due to changes in depth varying material properties—a nonhomogeneous poroelastic model study. Comput Methods Biomech Biomed Engin 5(1): 45–52. doi: 10.1080/10255840290008088 CrossRefGoogle Scholar
  37. Li L, Cheung J, Herzog W (2009) Three-dimensional fibril-reinforced finite element model of articular cartilage. Med Biol Eng Comput 47(6): 607–615. doi: 10.1007/s11517-009-0469-5 CrossRefGoogle Scholar
  38. Maroudas A (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260(5554): 808–809. doi: 10.1038/260808a0 CrossRefGoogle Scholar
  39. Maroudas A, Bannon C (1981) Measurement of swelling pressure in cartilage and comparison with the osmotic pressure of constituent proteoglycans. Biorheology 18(3–6): 619–632Google Scholar
  40. Maroudas A, Venn M (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling. Ann Rheum Dis 36(5): 399–406CrossRefGoogle Scholar
  41. Maroudas A, Bayliss M, Venn M (1980) Further studies on the composition of human femoral head cartilage. Ann Rheum Dis 39(5): 514–523CrossRefGoogle Scholar
  42. Maroudas A, Wachtel E, Grushko G, Katz E, Weinberg P (1991) The effect of osmotic and mechanical pressures on water partitioning in articular cartilage. Biochim Biophys Acta 1073(2): 285–294. doi: 10.1016/0304-4165(91)90133-2 Google Scholar
  43. Mow VC, Guo XE (2002) Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng 4: 175–209. doi: 10.1146/annurev.bioeng.4.110701.120309 CrossRefGoogle Scholar
  44. Rieppo J, Hyttinen M, Halmesmaki E, Ruotsalainen H, Vasara A, Kiviranta I, Jurvelin J, Helminen H (2009) Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation. Osteoarthritis Cartilage 17(4): 448–455. doi: 10.1016/j.joca.2008.09.004 CrossRefGoogle Scholar
  45. Schinagl RM, Gurskis D, Chen AC, Sah RL (1997) Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res 15(4): 499–506. doi: 10.1002/jor.1100150404 CrossRefGoogle Scholar
  46. Shirazi R, Shirazi-Adl A (2008) Deep vertical collagen fibrils play a significant role in mechanics of articular cartilage. J Orthop Res 26(5): 608–615. doi: 10.1002/jor.20537 CrossRefGoogle Scholar
  47. Shirazi R, Shirazi-Adl A, Hurtig M (2008) Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J Biomech 41(16): 3340–3348. doi: 10.1016/j.jbiomech.2008.09.033 CrossRefGoogle Scholar
  48. Van Turnhout MC, Haazelager MB, Gijsen MA, Schipper H, Kranenbarg S, Van Leeuwen JL (2008) Quantitative description of collagen structure in the articular cartilage of the young and adult equine distal metacarpus. Anim Biol 58(4): 353–370. doi: 10.1163/157075608X383674 CrossRefGoogle Scholar
  49. Van Turnhout MC, Schipper H, Engel B, Buist W, Kranenbarg S, Van Leeuwen JL (2010) Postnatal development of collagen structure in ovine articular cartilage. BMC Dev Biol (In press)Google Scholar
  50. Wang CCB, Guo XE, Sun D, Mow VC, Ateshian GA, Hung CT (2002) The functional environment of chondrocytes within cartilage subjected to compressive loading: a theoretical and experimental approach. Biorheology 39(1–2): 11–25Google Scholar
  51. Williamson AK, Chen AC, Sah RL (2001) Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res 19(6): 1113–1121. doi: 10.1016/S0736-0266(01)00052-3 CrossRefGoogle Scholar
  52. Wilson W, van Donkelaar C, van Rietbergen B, Ito K, Huiskes R (2004) Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J Biomech 37(3):357–366 doi: 10.1016/S0021-9290(03)00267-7, erratum in J Biomech 38(10):2138–2140, see Wilson et al. (2005b)Google Scholar
  53. Wilson W, van Donkelaar C, van Rietbergen B, Huiskes R (2005a) A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J Biomech 38(6):1195–1204, doi: 10.1016/j.jbiomech.2004.07.003, erratum in J Biomech 38(10):2138–2140, see Wilson et al (2005b)Google Scholar
  54. Wilson W, van Donkelaar C, van Rietbergen B, Ito K, Huiskes R (2005b) Erratum to “Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study” [J Biomech 37 (2004) 357–366] and “A fibril-reinforced poroviscoelastic swelling model for articular cartilage” [J Biomech 38 (2005) 1195–1204]. J Biomech 38(10):2138–2140. doi: 10.1016/j.jbiomech.2005.04.024 Google Scholar
  55. Wilson W, Driessen N, Van Donkelaar C, Ito K (2006) Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthritis Cartilage 14(11): 1196–1202. doi: 10.1016/j.joca.2006.05.006 CrossRefGoogle Scholar
  56. Wilson W, Huyghe J, van Donkelaar C (2006) A composition-based cartilage model for the assessment of compositional changes during cartilage damage and adaptation. Osteoarthritis Cartilage 14(6): 554–560. doi: 10.1016/j.joca.2005.12.006 CrossRefGoogle Scholar
  57. Wilson W, Huyghe J, van Donkelaar C (2007) Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech Model Mechanobiol 6(1–2): 43–53. doi: 10.1007/s10237-006-0044-z CrossRefGoogle Scholar
  58. Wong M, Wuethrich P, Buschmann M, Eggli P, Hunziker E (1997) Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res 15(2): 189–196. doi: 10.1002/jor.1100150206 CrossRefGoogle Scholar
  59. Wong M, Ponticiello M, Kovanen V, Jurvelin J (2000) Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J Biomech 33(9): 1049–1054. doi: 10.1016/S0021-9290(00)00084-1 CrossRefGoogle Scholar
  60. Wu JZ, Herzog W (2006) Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading. J Biomech 39(4): 603–616. doi: 10.1016/j.jbiomech.2005.01.007 CrossRefGoogle Scholar
  61. Zambrano NZ, Montes GS, Shigihara KM, Sanchez EM, Junqueira LC (1982) Collagen arrangement in cartilages. Acta Anat 113(1): 26–38. doi: 10.1159/000145534 CrossRefGoogle Scholar
  62. Zheng Y, Niu H, Arthur Mak F, Huang Y (2005) Ultrasonic measurement of depth-dependent transient behaviors of articular cartilage under compression. J Biomech 38(9): 1830–1837. doi: 10.1016/j.jbiomech.2004.08.020 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Mark C. van Turnhout
    • 1
    Email author
  • Sander Kranenbarg
    • 1
  • Johan L. van Leeuwen
    • 1
  1. 1.Experimental Zoology Group, Department of Animal SciencesWageningen UniversityWageningenThe Netherlands

Personalised recommendations