Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 9, Issue 6, pp 671–687 | Cite as

A model for arterial adaptation combining microstructural collagen remodeling and 3D tissue growth

  • I. M. Machyshyn
  • P. H. M. Bovendeerd
  • A. A. F. van de Ven
  • P. M. J. Rongen
  • F. N. van de Vosse
Open Access
Original Paper

Abstract

Long-term adaptation of soft tissues is realized through growth and remodeling (G&R). Mathematical models are powerful tools in testing hypotheses on G&R and supporting the design and interpretation of experiments. Most theoretical G&R studies concentrate on description of either growth or remodeling. Our model combines concepts of remodeling of collagen recruitment stretch and orientation suggested by other authors with a novel model of general 3D growth. We translate a growth-induced volume change into a change in shape due to the interaction of the growing tissue with its environment. Our G&R model is implemented in a finite element package in 3D, but applied to two rotationally symmetric cases, i.e., the adaptation towards the homeostatic state of the human aorta and the development of a fusiform aneurysm. Starting from a guessed non-homeostatic state, the model is able to reproduce a homeostatic state of an artery with realistic parameters. We investigate the sensitivity of this state to settings of initial parameters. In addition, we simulate G&R of a fusiform aneurysm, initiated by a localized degradation of the matrix of the healthy artery. The aneurysm stabilizes in size soon after the degradation stops.

Keywords

Artery Aneurysm Remodeling Growth Collagen 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Alford PW, Humphrey JD, Taber LA (2008) Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents. Biomech Model Mechanobiol 7(4): 245–262CrossRefGoogle Scholar
  2. Baek SR, Rajagopal KR, Humphrey JD (2005) Competition between radial expansion and thickening in the enlargement of an intracranial saccular aneurysm. J Elast 80: 13–31zbMATHCrossRefMathSciNetGoogle Scholar
  3. Baek SR, Rajagopal KR, Humphrey JD (2006) A theoretical model of enlarging intracranial fusiform aneurysms. J Biomech Eng 128: 142–149CrossRefGoogle Scholar
  4. Carmo M, Colombo L, Bruno A, Corsi F, Roncoroni L, Cuttin MS, Radice F, Mussini E, Settembrini PG (2002) Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 23(6): 543–549CrossRefGoogle Scholar
  5. Dajnowiec D, Langille BL (2007) Arterial adaptations to chronic changes in haemodynamic function: coupling vasomotor tone to structural remodelling. Clin Sci (Lond) 113(1): 15–23CrossRefGoogle Scholar
  6. Driessen NJB, Wilson W, Bouten CVC, Baaijens FPT (2004) A computational model for collagen fibre remodelling in the arterial wall. J Theor Biol 226: 53–64CrossRefGoogle Scholar
  7. Driessen NJB, Bouten CVC, Baaijens FPT (2005) A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J Biomech Eng 127(3): 494–503CrossRefGoogle Scholar
  8. Driessen NJB, Cox MAJ, Bouten CVC, Baaijens FPT (2008) Remodeling of the angular collagen fiber distribution in cardiovascular tissues. Biomech Model Mechanobiol 7(2): 93–103CrossRefGoogle Scholar
  9. Feldman SA, Glagov S (1971) Transmedial collagen and elastin gradients in human aortas: reversal with age. Atherosclerosis 13(3): 385–394CrossRefGoogle Scholar
  10. Finlay HM, McCullough L, Canham PB (1995) Three-dimensional collagen organization of human brain arteries at different transmural pressures. J Vasc Res 32(5): 301–312Google Scholar
  11. Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, Jääskeläinen J (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35(10): 2287– 2293CrossRefGoogle Scholar
  12. Fung YD (1991) What are the residual stresses doing in our blood vessels?. Ann Biomed Eng 19(3): 237–249CrossRefMathSciNetGoogle Scholar
  13. Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New YorkGoogle Scholar
  14. Gleason RL, Taber LA, Humphrey JD (2004) A 2-D model of flow-induced alterations in the geometry, structure, and properties of carotid arteries. J Biomech Eng 126(3): 371–381CrossRefGoogle Scholar
  15. Greenwald SE, Moore JE, Rachev A, Kane TP, Meister JJ (1997) Experimental investigation of the distribution of residual strains in the artery wall. J Biomech Eng 119(4): 438–444CrossRefGoogle Scholar
  16. Hariton I, deBotton G, Gasser TC, Holzapfel GA (2007) Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6(3): 163–175CrossRefGoogle Scholar
  17. He CM, Roach MR (1994) The composition and mechanical properties of abdominal aortic aneurysms. J Vasc Surg 20(1): 6–13Google Scholar
  18. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 16: 1–48CrossRefMathSciNetGoogle Scholar
  19. Hu JJ, Fossum TW, Miller MW, Xu H, Liu JC, Humphrey JD (2007) Biomechanics of the porcine basilar artery in hypertension. Ann Biomed Eng 35(1): 19–29CrossRefGoogle Scholar
  20. Humphrey JD (1999) Remodeling of a collagenous tissue at fixed lengths. J Biomech Eng 121: 591–597CrossRefGoogle Scholar
  21. Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Model Method Appl Sci 12(3): 407–430zbMATHCrossRefMathSciNetGoogle Scholar
  22. Klisch SM, van Dyke TJ, Hoger A (2001) A theory of volumetric growth for compressible elastic biological materials. Math Mech Solids 6: 551–575zbMATHCrossRefGoogle Scholar
  23. Kroon M, Holzapfel GA (2007) A model for saccular cerebral aneurysm growth by collagen fibre remodelling. J Theor Biol 247(4): 775–787CrossRefMathSciNetGoogle Scholar
  24. Kuhl E, Maas R, Himpel G, Menzel A (2007) Computational modeling of arterial wall growth. Biomech Model Mechanobiol 6: 321–331CrossRefGoogle Scholar
  25. Langille BL (1996) Arterial remodeling: relation to hemodynamics. Can J Physiol Pharmacol 74: 834–841CrossRefGoogle Scholar
  26. Lehoux S, Lemarie CA, Esposito B, Lijnen HR, Tedgui A (2004) Pressure-induced matrix metalloproteinase-9 contributes to early hypertensive remodeling. Circulation 109(8): 1041– 1047CrossRefGoogle Scholar
  27. Malek A, Izumo S (1992) Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am J Physiol 263(2 Pt 1): C389–C396Google Scholar
  28. Rachev A, Stergiopulos N, Meister JJ (1996) Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure. J Biomech 29(5): 635–642CrossRefGoogle Scholar
  29. Rhodin JAG (1980) Architecture of the vessel wall. In: Sparks HVJr, Bohr DF, Somlyo AD, Geiger SR (eds) Handbook of physiology. The cardiovascular system, vol 2. American Physiological Society, Bethesda, pp 1–31Google Scholar
  30. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4): 455–467CrossRefGoogle Scholar
  31. Rodriguez J, Goicolea JM, Gabaldon F (2007) A volumetric model for growth of arterial walls with arbitrary geometry and loads. J Biomech 40(5): 961–971CrossRefGoogle Scholar
  32. Segal A (2007) SEPRAN programmers guide, standard problems, users manual, manual examples, manual user examples, theoretical manual. Ingenieursbureau SEPRA, Den HaagGoogle Scholar
  33. Seliktar D, Nerem RM, Galis ZS (2003) Mechanical strain-stimulated remodeling of tissue-engineered blood vessel constructs. Tissue Eng 9(4): 657–666CrossRefGoogle Scholar
  34. Skalak R, Dasgupta G, Moss M, Otten E, Dullumeijer P, Vilmann H (1982) Analytical description of growth. J Theor Biol 94(3): 555–577CrossRefGoogle Scholar
  35. Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120: 348–354CrossRefGoogle Scholar
  36. Taber LA (2000) Pattern formation in a nonlinear membrane model for epithelial morphogenesis. Acta Biotheor 48: 47–63CrossRefGoogle Scholar
  37. Taber LA, Eggers DW (1996) Theoretical study of stress-modulated growth in the aorta. J Theor Biol 180(4): 343–357CrossRefGoogle Scholar
  38. Taber LA, Humphrey JD (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biomech Eng 123(6): 528–535CrossRefGoogle Scholar
  39. Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG (1995) Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 269(6 Pt 1): C1371–C1378Google Scholar
  40. Valentin A, Cardamone L, Baek S, Humphrey JD (2009) Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J R Soc Interface 6(32): 293–306CrossRefGoogle Scholar
  41. Watton PN, Hill NA (2009) Evolving mechanical properties of a model of abdominal aortic aneurysm. Biomech Model Mechanobiol 8(1): 25–42CrossRefGoogle Scholar
  42. Watton PN, Hill NA, Heil M (2004) A mathematical model for the growth of the abdominal aortic aneurysm. Biomech Model Mechanobiol 3: 98–113CrossRefGoogle Scholar
  43. Watton PN, Ventikos Y, Holzapfel GA (2009) Modelling the growth and stabilization of cerebral aneurysms. Math Med Biol 26(2): 133–164zbMATHCrossRefGoogle Scholar
  44. Wermer MJ, van der Schaaf IC, Velthuis BK, Algra A, Buskens E, Rinkel GJ (2005) Follow-up screening after subarachnoid haemorrhage: frequency and determinants of new aneurysms and enlargement of existing aneurysms. Brain 128: 2421–2429CrossRefGoogle Scholar
  45. Wicker BK, Hutchens HP, Wu Q, Yeh AT, Humphrey JD (2008) Normal basilar artery structure and biaxial mechanical behaviour. Comput Methods Biomech Biomed Eng 11(5): 539–551CrossRefGoogle Scholar
  46. Wolinsky H, Glagov S (1964) Structural basis for the static mechanical properties of the aortic media. Circ Res 14: 400–413Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • I. M. Machyshyn
    • 1
  • P. H. M. Bovendeerd
    • 1
  • A. A. F. van de Ven
    • 2
  • P. M. J. Rongen
    • 3
  • F. N. van de Vosse
    • 1
  1. 1.Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Mathematics and Computing ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Philips Medical SystemsBestThe Netherlands

Personalised recommendations