Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 9, Issue 5, pp 597–611 | Cite as

A nonlocal constitutive model for trabecular bone softening in compression

  • Mathieu Charlebois
  • Milan Jirásek
  • Philippe K. Zysset
Original Paper

Abstract

Using the three-dimensional morphological data provided by computed tomography, finite element (FE) models can be generated and used to compute the stiffness and strength of whole bones. Three-dimensional constitutive laws capturing the main features of bone mechanical behavior can be developed and implemented into FE software to enable simulations on complex bone structures. For this purpose, a constitutive law is proposed, which captures the compressive behavior of trabecular bone as a porous material with accumulation of irreversible strain and loss of stiffness beyond its yield point and softening beyond its ultimate point. To account for these features, a constitutive law based on damage coupled with hardening anisotropic elastoplasticity is formulated using density and fabric-based tensors. To prevent mesh dependence of the solution, a nonlocal averaging technique is adopted. The law has been implemented into a FE software and some simple simulations are first presented to illustrate its behavior. Finally, examples dealing with compression of vertebral bodies clearly show the impact of softening on the localization of the inelastic process.

Keywords

Trabecular bone Constitutive law Softening Nonlocal Damage Plasticity Anisotropy Fabric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bažant ZP, Cedolin L (1991) Stability of structures. Oxford University Press, New York and OxfordzbMATHGoogle Scholar
  2. Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech ASCE 128: 1119–1149CrossRefGoogle Scholar
  3. Boutroy S, Van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD (2008) Finite element analysis based on in vivo hr-pqct images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23(3): 392–399CrossRefGoogle Scholar
  4. Chevalier Y, Charlebois M, Pahr D, Varga P, Heini P, Schneider E, Zysset P (2008a) A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Comput Methods Biomech Biomed Eng 11(5): 477–487CrossRefGoogle Scholar
  5. Chevalier Y, Pahr D, Charlebois M, Heini P, Schneider E, Zysset P (2008b) Cement distribution, volume, and compliance in vertebroplasty: some answers from an anatomy-based nonlinear finite element study. Spine 33(16): 1722–1730CrossRefGoogle Scholar
  6. Chevalier Y, Pahr DH, Zysset PK (2008c) Anatomy and morphology-based smooth finite element models of human vertebral bodies. In: 16th Annual symposium on computational methods in orthopaedic biomechanics, San Francisco, California, March 1st, 2008Google Scholar
  7. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33(4): 744–750CrossRefGoogle Scholar
  8. Cristofolini L, Juszczyk M, Martelli S, Taddei F, Viceconti M (2007) In vitro replication of spontaneous fractures of the proximal human femur. J Biomech 40(13): 2837–2845CrossRefGoogle Scholar
  9. Curnier A, He Q-C, Zysset P (1995) Conewise linear elastic materials. J Elast 37(1): 1–38CrossRefMathSciNetzbMATHGoogle Scholar
  10. Eswaran SK, Gupta A, Adams MF, Keaveny TM (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21(2): 307–314CrossRefGoogle Scholar
  11. Eswaran SK, Gupta A, Keaveny TM (2007) Locations of bone tissue at high risk of initial failure during compressive loading of the human vertebral body. Bone 41(4): 733–739CrossRefGoogle Scholar
  12. Fondrk MT, Bahniuk EH, Davy DT (1999a) A damage model for nonlinear tensile behavior of cortical bone. J Biomech Eng 121(5): 533–541CrossRefGoogle Scholar
  13. Fondrk MT, Bahniuk EH, Davy DT (1999b) Inelastic strain accumulation in cortical bone during rapid transient tensile loading. J Biomech Eng 121(6): 616–621CrossRefGoogle Scholar
  14. Garcia D, Zysset P, Charlebois M, Curnier A (2009) A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomech Model Mechanobiol 8: 149–165CrossRefGoogle Scholar
  15. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, CambridgeGoogle Scholar
  16. Grassl P, Jirásek M (2006a) Damage-plastic model for concrete failure. Int J Solids Struct 43(22–23): 7166–7196CrossRefzbMATHGoogle Scholar
  17. Grassl P, Jirásek M (2006b) Plastic model with non-local damage applied to concrete. Int J Numer Anal Methods Geomech 30(1): 71–90CrossRefzbMATHGoogle Scholar
  18. Green AE, Naghdi PM (1965) A general theory of an elastic-plastic continuum. Springer, BerlinGoogle Scholar
  19. Hansen NR, Schreyer HL (1994) A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int J Solids Struct 33(3): 359–389CrossRefGoogle Scholar
  20. Hayes WC, Carter DR (1976) Postyield behavior of subchondral trabecular bone. J Biomed Mater Res 10(4): 537–544CrossRefGoogle Scholar
  21. Imai K, Ohnishi I, Matsumoto T, Yamamoto S, Nakamura K (2009) Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method. Osteoporos Int 20(5): 801–810CrossRefGoogle Scholar
  22. Jirásek M, Patzák B (2002) Consistent tangent stiffness for nonlocal damage models. Comput Struct 80(14–15): 1279–1293CrossRefGoogle Scholar
  23. Kachanov LM (1986) Introduction to continuum damage mechanics. Springer, BerlinzbMATHGoogle Scholar
  24. Keaveny TM, Donley DW, Hoffmann PF, Mitlak BH, Glass EV, San Martin JA (2007) Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of qct scans in women with osteoporosis. J Bone Miner Res 22(1): 149–157CrossRefGoogle Scholar
  25. Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3: 307–333CrossRefGoogle Scholar
  26. Lemaitre J, Chaboche J-L (1994) Mechanics of solid materials. Cambridge University Press, CambridgeGoogle Scholar
  27. Lubarda VA, Krajcinovic D (1995) Some fundamental issues in rate theory of damage-elastoplasticity. Int J Plas 11(7): 763–797CrossRefzbMATHGoogle Scholar
  28. Macneil JA, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42(6): 1203–1213CrossRefGoogle Scholar
  29. Matsuura M, Eckstein F, Lochmüller E-M, Zysset PK (2008) The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech Model Mechanobiol 7(1): 27–42CrossRefGoogle Scholar
  30. Maugin GA (1992) The Thermomechanics of plasticity and fracture. Cambridge University Press, CambridgezbMATHGoogle Scholar
  31. Melton LJ, Riggs BL, van Lenthe GH, Achenbach SJ, Müller R, Bouxsein ML, Amin S, Atkinson EJ, Khosla S (2007) Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res 22(9): 1442–1448CrossRefGoogle Scholar
  32. Natali AN, Carniel EL, Pavan PG (2008a) Constitutive modelling of inelastic behaviour of cortical bone. Med Eng Phys 30(7): 905–912CrossRefGoogle Scholar
  33. Natali AN, Carniel EL, Pavan PG (2008b) Investigation of bone inelastic response in interaction phenomena with dental implants. Dent Mater 24(4): 561–569CrossRefGoogle Scholar
  34. Pahr D, Zysset P (2009) From high-resolution ct data to finite element models: development of an integrated modular framework. Comput Methods Biomech Biomed Engin 12(1): 45–57CrossRefGoogle Scholar
  35. Patzák B, Bittnar Z (2001) Design of object oriented finite element code. Adv Eng Softw 32(10–11): 759–767CrossRefzbMATHGoogle Scholar
  36. Pistoia W, van Rietbergen B, Lochmller E-M, Lill CA, Eckstein F, Regsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6): 842–848CrossRefGoogle Scholar
  37. Prendergast P (1997) Finite element models in tissue mechanics and orthopaedic implant design. Clin Biomech 12(6): 343–366CrossRefGoogle Scholar
  38. Rakotomanana L, Curnier A, Leyvraz F (1991) An objective anisotropic elastic plastic model and algorithm applicable to bone mechanics. Eur J Mech Solid 10(3): 327–342zbMATHGoogle Scholar
  39. Rincón-Kohli L, Zysset P (2009) Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol 8(3): 195–208CrossRefGoogle Scholar
  40. Simo JC, Hughes TJR (2000) Computational Inelasticity. Interdisciplinary Applied Mathematics. Springer, corrected editionGoogle Scholar
  41. Simo JC, Taylor RL (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48(1): 101–118CrossRefMathSciNetzbMATHGoogle Scholar
  42. Verhulp E, van Rietbergen B, Müller R, Huiskes R (2008) Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. J Biomech 41(7): 1479–1485CrossRefGoogle Scholar
  43. Zysset P (1994) A constitutive law for trabecular bone. PhD thesis, EPFL, LausanneGoogle Scholar
  44. Zysset P, Curnier A (1995) An alternative model for anisotropic elasticity based on fabric tensors. Mech Mater 21(4): 243–250CrossRefGoogle Scholar
  45. Zysset PK, Curnier A (1996) A 3d damage model for trabecular bone based on fabric tensors. J Biomech 29(12): 1549–1558Google Scholar
  46. Zysset P, Rincón L (2006) Mechanics of biological tissue., Chapter an alternative fabric-based yield and failure criterion for trabecular bone. Springer, Berlin, pp, pp 457–470Google Scholar
  47. Zysset PK (2003) A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J Biomech 36(10): 1469–1485CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mathieu Charlebois
    • 1
  • Milan Jirásek
    • 1
  • Philippe K. Zysset
    • 2
  1. 1.Department of Mechanics, Faculty of Civil EngineeringCzech Technical University in PraguePragueCzech Republic
  2. 2.Institute of Lightweight Design and Structural BiomechanicsVienna University of TechnologyViennaAustria

Personalised recommendations