Biomechanics and Modeling in Mechanobiology

, Volume 9, Issue 5, pp 511–521 | Cite as

Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms

  • A. Maier
  • M. W. Gee
  • C. Reeps
  • H.-H. Eckstein
  • W. A. Wall
Original Paper


As a degenerative and inflammatory desease of elderly patients, about 80% of abdominal aortic aneurysms (AAA) show considerable wall calcification. Effect of calcifications on computational wall stress analyses of AAAs has been rarely treated in literature so far. Calcifications are heterogeneously distributed, non-fibrous, stiff plaques which are most commonly found near the luminal surface in between the intima and the media layer of the vessel wall. In this study, we therefore investigate the influence of calcifications as separate AAA constituents on finite element simulation results. Thus, three AAAs are reconstructed with regard to intraluminal thrombus (ILT), calcifications and vessel wall. Each patient-specific AAA is simulated twice, once including all three AAA constituents and once neglecting calcifications as it is still common in literature. Parameters for constitutive modeling of calcifications are thereby taken from experiments performed by the authors, showing that calcifications exhibit an almost linear stress–strain behavior with a Young’s modulus E ≥ 40 MPa. Simulation results show that calcifications exhibit significant load-bearing effects and reduce stress in adjacent vessel wall. Average stress within the vessel wall is reduced by 9.7 to 59.2%. For two out of three AAAs, peak wall stress decreases when taking calcifications into consideration (8.9 and 28.9%). For one AAA, simulated peak wall stress increases by 5.5% due to stress peaks near calcification borders. However, such stress singularities due to sudden stiffness jumps are physiologically doubtful. It can further be observed that large calcifications are mostly situated in concavely shaped regions of the AAA wall. We deduce that AAA shape is influenced by existent calcifications, thus crucial errors occur if they are neglected in computational wall stress analyses. A general increase in rupture risk for calcified AAAs is doubted.


Abdominal aortic aneurysm Calcification Finite element method Patient-specific modeling Wall stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashton JH, Van de Geest JP, Simon BR, Haskett DG (2009) Compressive mechanical properties of the intraluminal thrombus in abdominal aortic aneurysms and fibrin-based thrombus mimics. J Biomech 42(3): 197–201CrossRefGoogle Scholar
  2. Bode MK, Soini Y, Melkko J, Satta J, Risteli L, Risteli J (2000) Increased amount of type iii pn-collagen in human abdominal aortic aneurysms: evidence for impaired type iii collagen fibrillogenesis. J Vasc Surg 32(6): 1201–1207CrossRefGoogle Scholar
  3. Carmo M, Colombo L, Bruno A, Corsi FRM, Roncoroni L, Cuttin MS, Radice F, Mussini E, Settembrini PG (2002) Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 23(6): 543–549CrossRefGoogle Scholar
  4. de Putter S, van de Vosse FN, Breeuwer M, Gerritsen FA (2006) Local influence of calcifications on the wall mechanics of abdominal aortic aneurysm. In: Proceeings of SPIE, vol 6143, San Diego, CA, USA, SPIE, pp 61432E-11Google Scholar
  5. Eckstein H-H, Knipfer E (2007) Status quo der Gefaesschirurgie. Der Chirurg 78(7): 583–592CrossRefGoogle Scholar
  6. Fillinger MF, Marra SP, Raghavan ML, Kennedy FE (2003) Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg 37(4): 724–732CrossRefGoogle Scholar
  7. Finol EA, Amon CH (2001) Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics. J Biomech Eng 123(5): 474–484CrossRefGoogle Scholar
  8. Fung YC (1993) Biomechanics—mechanical properties of living tissues. 2nd edn. Springer, New YorkGoogle Scholar
  9. Gee MW, Förster Ch, Wall WA (2010) A computational strategy for prestressing patient specific biomechanical problems under finite deformation. Int J Numer Methods Biomed Eng 26(1): 52–72CrossRefMATHGoogle Scholar
  10. Gee MW, Reeps C, Eckstein H-H, Wall WA (2009) Prestressing in finite deformation abdominal aortic aneurysm simulation. J Biomech 42(11): 1732–1739CrossRefGoogle Scholar
  11. Hariton I, de Botton G, Gasser T, Holzapfel G (2007) Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6(3): 163–175CrossRefGoogle Scholar
  12. Heider P, Wolf O, Reeps C, Hanke M, Zimmermann A, Berger H, Eckstein H-H (2007) Aneurysmen und Dissektionen der thorakalen und abdominellen Aorta. Der Chirurg 78(7): 600–610CrossRefGoogle Scholar
  13. Holzapfel GA (2008) Collagen: structure and mechanics, chapter collagen in arterial walls: biomechanical aspects. Springer, New York, pp 285–324Google Scholar
  14. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103(8): 1051–1056Google Scholar
  15. Humphrey JD (2002) Cardiovascular solid mechanics—cells, tissues, and organs. Springer, New YorkGoogle Scholar
  16. Humphrey JD, Taylor CA (2008) Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu Rev Biomed Eng 10(1): 221–246CrossRefGoogle Scholar
  17. Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U, Swedenborg J (2003) Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg 38(6): 1283–1292CrossRefGoogle Scholar
  18. Kjaer M, Magnusson SP (2008) Collagen: structure and mechanics, chapter mechanical adaption and tissue remodeling. Springer, New York, pp 249–268Google Scholar
  19. Li Z-Y, U-King-Im J, Tang TY, Soh E, See TC, Gillard JH (2008) Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J Vasc Surg 47(5): 928–935CrossRefGoogle Scholar
  20. Loree HM, Grodzinsky AJ, Park SY, Gibson LJ, Lee RT (1994) Static circumferential tangential modulus of human atherosclerotic tissue. J Biomech 27(2): 195–204CrossRefGoogle Scholar
  21. Minnee RC, Idu MM, Balm R (2005) Coral reef aorta: case reports and review of the literature. EJVES Extra 9(3): 39–43CrossRefGoogle Scholar
  22. Mower WR, Quinones WJ, Gambhir SS (1997) Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J Vasc Surg 26(4): 602–608CrossRefGoogle Scholar
  23. Ockert S, Boeckler D, Allenberg J, Schumacher H (2007) Rupturiertes abdominelles Aortenaneurysma. Gefaesschirurgie 12(5): 379–391CrossRefGoogle Scholar
  24. Raghavan ML, Kratzberg J, Castro de Tolosa EM, Hanaoka MM, Walker P, da Silva ES (2006) Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J Biomech 39(16): 3010–3016CrossRefGoogle Scholar
  25. Raghavan ML, Vorp DA (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 33(4): 475–482CrossRefGoogle Scholar
  26. Raghavan ML, Webster MW, Vorp DA (1996) Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann Biomed Eng 24(5): 573–582CrossRefGoogle Scholar
  27. Reeps C, Gee MW, Maier A, Gurdan M, Wall WA, Eckstein H-H (2009) The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. J Vasc Surg (in press)Google Scholar
  28. Reeps C, Gee MW, Maier A, Pelisek J, Gurdan M, Wall WA, Mariss J, Eckstein H-H, Essler M (2009) Glucose metabolism in the vessel wall correlates with mechanical instability and inflammatory changes in a patient with a growing aneurysm of the abdominal aorta. Circ Cardiovasc Imaging 2(6): 507–509CrossRefGoogle Scholar
  29. Sakalihasan N, Limet R, Defawe OD (2005) Abdominal aortic aneurysm. The Lancet 365(9470): 1577–1589CrossRefGoogle Scholar
  30. Sakalihasan N, Michel JB (2009) Functional imaging of atherosclerosis to advance vascular biology. Eur J Vasc Endovasc Surg 37(6): 728–734CrossRefGoogle Scholar
  31. Sarnak MJ (2003) Cardiovascular complications in chronic kidney disease. Am J Kidney Diseases 41(5): 11–17CrossRefGoogle Scholar
  32. Siegel CL, Cohan RH, Korobkin M, Alpern MB, Courneya DL, Leder RA (1994) Abdominal aortic aneurysm morphology: Ct features in patients with ruptured and nonruptured aneurysms. Am J Roentgenol 163(5): 1123–1129Google Scholar
  33. Speelman L, Bohra A, Bosboom EMH, Schurink GWH, van de Vosse FN, Makaroun MS, Vorp DA (2007) Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. J Biomech Eng 129(1): 105–109CrossRefGoogle Scholar
  34. Van de Geest JP, Sacks MS, Vorp DA (2006) The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech 39(7): 1324–1334CrossRefGoogle Scholar
  35. Van de Geest JP, Sacks MS, Vorp DA (2006) A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J Biomech 39(13): 2347–2354CrossRefGoogle Scholar
  36. Van de Geest JP, Schmidt D, Sacks M, Vorp DA (2008) The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann Biomed Eng 36(6): 921–932CrossRefGoogle Scholar
  37. Van de Geest JP, Wang DHJ, Wisniewski S, Makaroun M, Vorp D (2006) Toward a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann Biomed Eng 34(7): 1098–1106CrossRefGoogle Scholar
  38. Vorp DA (2007) Biomechanics of abdominal aortic aneurysm. J Biomech 40(9): 1887–1902CrossRefGoogle Scholar
  39. Wall WA, Gee MW (2009) Baci: a parallel multiphysics finite element environment. Technical report, Institute for Computational Mechanics, Technische Universität MünchenGoogle Scholar
  40. Wang DHJ, Makaroun MS, Webster MW, Vorp DA (2001) Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J Biomech Eng 123(6): 536–539CrossRefGoogle Scholar
  41. Wang DHJ, Makaroun MS, Webster MW, Vorp DA (2002) Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg 36(3): 598–604CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • A. Maier
    • 1
  • M. W. Gee
    • 1
  • C. Reeps
    • 2
  • H.-H. Eckstein
    • 2
  • W. A. Wall
    • 1
  1. 1.Institute for Computational MechanicsTechnische Universität MünchenMünchenGermany
  2. 2.Klinik für GefässchirurgieKlinikum rechts der Isar der Technischen Universität MünchenMünchenGermany

Personalised recommendations