Biomechanics and Modeling in Mechanobiology

, Volume 9, Issue 4, pp 481–498 | Cite as

Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms

  • Y. Bazilevs
  • M.-C. Hsu
  • Y. Zhang
  • W. Wang
  • T. Kvamsdal
  • S. Hentschel
  • J. G. Isaksen
Open Access
Original Paper

Abstract

A computational vascular fluid–structure interaction framework for the simulation of patient-specific cerebral aneurysm configurations is presented. A new approach for the computation of the blood vessel tissue prestress is also described. Simulations of four patient-specific models are carried out, and quantities of hemodynamic interest such as wall shear stress and wall tension are studied to examine the relevance of fluid–structure interaction modeling when compared to the rigid arterial wall assumption. We demonstrate that flexible wall modeling plays an important role in accurate prediction of patient-specific hemodynamics. Discussion of the clinical relevance of our methods and results is provided.

Keywords

Cerebral aneurysms Fluid–structure interaction Arterial wall tissue modeling Incompressible Navier–Stokes equations Boundary layer meshing Wall shear stress Wall tension Tissue prestress 

References

  1. Appanaboyina S, Mut F, Löhner R, Putman C, Cebral J (2009) Simulation of intracranial aneurysm stenting: techniques and challenges. Comput Methods Appl Mech Eng 198: 3567–3582CrossRefMATHGoogle Scholar
  2. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322CrossRefMathSciNetMATHGoogle Scholar
  3. Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201CrossRefMATHGoogle Scholar
  4. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37CrossRefMathSciNetMATHGoogle Scholar
  5. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009a) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550CrossRefMathSciNetMATHGoogle Scholar
  6. Bazilevs Y, Hsu M-C, Benson DJ, Sankaran S, Marsden AL (2009b) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89CrossRefMathSciNetMATHGoogle Scholar
  7. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32: 199–259CrossRefMathSciNetMATHGoogle Scholar
  8. Castro MA, Putman CM, Cebral JR (2006) Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. Am J Neuroradiol 27: 1703–1709Google Scholar
  9. Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging 24: 457–467CrossRefGoogle Scholar
  10. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60: 371–375CrossRefMathSciNetMATHGoogle Scholar
  11. Cummins PM, von Offenberg Sweeney N, Killeen MT, Birney YA, Redmond EM, Cahill PA (2007) Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with. Am J Physiol Heart Circ Physiol 292: H28–H42CrossRefGoogle Scholar
  12. Fernández MA, Gerbeau J-F, Gloria A, Vidrascu M (2008) A partitioned Newton method for the interaction of a fluid and a 3D shell structure. Technical Report RR-6623, INRIAGoogle Scholar
  13. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195: 5685–5706CrossRefMathSciNetMATHGoogle Scholar
  14. Figueroa CA, Baek S, Taylor CA, Humphrey JD (2009) A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng 198: 3583–3602CrossRefMathSciNetMATHGoogle Scholar
  15. Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D navier-stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191: 561–582CrossRefMathSciNetMATHGoogle Scholar
  16. Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput Struct 83: 155–165CrossRefGoogle Scholar
  17. Holzapfel GA (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, ChichesterMATHGoogle Scholar
  18. Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 3, Fluids, chapter 2. WileyGoogle Scholar
  19. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD finite elements, NURBS exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195CrossRefMathSciNetMATHGoogle Scholar
  20. Humphrey JD (2002) Cardiovascular solid mechanics, cells, tissues, and organs. Springer, New YorkGoogle Scholar
  21. Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178CrossRefGoogle Scholar
  22. Jansen KE, Whiting CH, Hulbert GM (1999) A generalized-α method for integrating the filtered navier-stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190: 305–319CrossRefMathSciNetGoogle Scholar
  23. Lagana K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A (2002) Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39: 359–364Google Scholar
  24. Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2009) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199: 357–373CrossRefGoogle Scholar
  25. Marsden AL, Feinstein JA, Taylor CA (2008) A computational framework for derivative-free optimization of cardiovascular geometries. Comput Methods Appl Mech Eng 197: 1890–1905CrossRefMathSciNetGoogle Scholar
  26. Nobile F (2001) Numerical approximation of fluid-structure interaction problems with application to hemodynamics. Ph.D. thesis, EPFLGoogle Scholar
  27. Rank E, Düster A, Nübel V, Preusch K, Bruhns OT (2005) High order finite elements for shells. Comput Methods Appl Mech Eng 194: 2494–2512CrossRefMATHGoogle Scholar
  28. Rissland P, Alemu Y, Einav S, Ricotta J, Bluestein D (2009) Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model. J Biomech Eng 131: 031001CrossRefGoogle Scholar
  29. Ryu C-W, Jahng G-H, Kim E-J, Choi W-S, Yang D-M (2009) High resolution wall and lumen MRI of the middle cerebral arteries at 3 tesla. Cerebrovasc Dis 27: 433–442CrossRefGoogle Scholar
  30. Scotti CM, Finol EA (2007) Compliant biomechanics of abdominal aortic aneurysms: a fluid-structure interaction study. Comput Struct 85: 1097–1113CrossRefGoogle Scholar
  31. Sforza DM, Putman CM, Cebral JR (2009) Hemodynamics of cerebral aneurysms. Annu Rev Fluid Mech 41: 91–107CrossRefGoogle Scholar
  32. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YorkMATHGoogle Scholar
  33. Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010a) Space-time finite element computation of arterial fluid-structure interactions with patient-specific data. Commun Numer Methods Eng 26: 101–116MATHGoogle Scholar
  34. Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010b) Wall shear stress calculations in space-time finite element computation of arterial fluid-structure interactions. Comput Mech. Published online, doi:10.1007/s00466-009-0425-0
  35. Taylor CA, Humphrey JD (2009) Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics. Comput Methods Appl Mech Eng 198: 3514–3523CrossRefMathSciNetMATHGoogle Scholar
  36. Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158: 155–196CrossRefMathSciNetMATHGoogle Scholar
  37. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575CrossRefMathSciNetMATHGoogle Scholar
  38. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modelling of fluid-structure interactions with the space-time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922CrossRefMathSciNetMATHGoogle Scholar
  39. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2009) Multiscale sequentially-coupled arterial FSI technique. Comput Mech. doi:10.1007/s00466-009-0423-2
  40. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006a) Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Comput Methods Appl Mech Eng 195: 1885–1895CrossRefMathSciNetMATHGoogle Scholar
  41. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006b) Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490CrossRefMATHGoogle Scholar
  42. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of the wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168CrossRefMATHGoogle Scholar
  43. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159CrossRefMATHGoogle Scholar
  44. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621CrossRefMathSciNetMATHGoogle Scholar
  45. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195: 3776–3796CrossRefMathSciNetMATHGoogle Scholar
  46. Watton PN, Raberger NB, Holzapfel GA, Ventikos Y (2009) Coupling the hemodynamic environment to the evolution of cerebral aneurysms: computational framework and numerical examples. J Biomech Eng 131: 101003CrossRefGoogle Scholar
  47. Wolters BJBM, Rutten MCM, Schurink GWH, Kose U, de Hart J, van de Vosse FN (2005) A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms. Med Eng Phys 27: 871–883CrossRefGoogle Scholar
  48. Zhang Y, Wang W, Liang X, Bazilevs Y, Hsu M-C, Kvamsdal T, Brekken R, Isaksen JG (2009) High-fidelity tetrahedral mesh generation from medical imaging data for fluid-structure interaction analysis of cerebral aneurysms. Comput Model Eng Sci 42: 131– 150Google Scholar
  49. Zunino P, D’Angelo C, Petrini L, Vergara C, Capelli C, Migliavacca F (2009) Numerical simulation of drug eluting coronary stents: mechanics, fluid dynamics and drug release. Comput Methods Appl Mech Eng 198: 3633–3644CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Y. Bazilevs
    • 1
  • M.-C. Hsu
    • 1
  • Y. Zhang
    • 2
  • W. Wang
    • 2
  • T. Kvamsdal
    • 3
  • S. Hentschel
    • 4
  • J. G. Isaksen
    • 5
    • 6
  1. 1.Department of Structural EngineeringUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of Applied MathematicsSINTEF Information and Communication TechnologyTrondheimNorway
  4. 4.Department of Scientific ComputingSimulaFornebuNorway
  5. 5.Departments of Neurosurgery and NeurologyUniversity Hospital of North NorwayTromsøNorway
  6. 6.Institute of Clinical MedicineUniversity of TromsøTromsøNorway

Personalised recommendations