Biomechanics and Modeling in Mechanobiology

, Volume 9, Issue 3, pp 281–293

Anterior mitral leaflet curvature in the beating ovine heart: a case study using videofluoroscopic markers and subdivision surfaces

  • S. Göktepe
  • W. Bothe
  • J.-P. E. Kvitting
  • J. C. Swanson
  • N. B. Ingels
  • D. C. Miller
  • Ellen Kuhl
Original Paper

Abstract

The implantation of annuloplasty rings is a common surgical treatment targeted to re-establish mitral valve competence in patients with mitral regurgitation. It is hypothesized that annuloplasty ring implantation influences leaflet curvature, which in turn may considerably impair repair durability. This research is driven by the vision to design repair devices that optimize leaflet curvature to reduce valvular stress. In pursuit of this goal, the objective of this manuscript is to quantify leaflet curvature in ovine models with and without annuloplasty ring using in vivo animal data from videofluoroscopic marker analysis. We represent the surface of the anterior mitral leaflet based on 23 radiopaque markers using subdivision surfaces techniques. Quartic box-spline functions are applied to determine leaflet curvature on overlapping subdivision patches. We illustrate the virtual reconstruction of the leaflet surface for both interpolating and approximating algorithms. Different scalar-valued metrics are introduced to quantify leaflet curvature in the beating heart using the approximating subdivision scheme. To explore the impact of annuloplasty ring implantation, we analyze ring-induced curvature changes at characteristic instances throughout the cardiac cycle. The presented results demonstrate that the fully automated subdivision surface procedure can successfully reconstruct a smooth representation of the anterior mitral valve from a limited number of markers at a high temporal resolution of approximately 60 frames per minute.

Keywords

Mitral valve Mitral regurgitation Annuloplasty ring Curvature Subdivision surfaces Continuity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bothe W, Krishnamurthy G, Chang PA, Swanson JC, Briones EP, Davis LR, Itoh A, Ingels NB, Miller CD (2009) Effects of the Geoform® annuloplasty ring on anterior mitral leaflet strains and stresses in the normal ovine heart (submitted for publication)Google Scholar
  2. Bornow RO, Carabello BA, Chatterjee K, deLeon AC, Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nischimura RA, O’Gara PT, O’Rourke RA, Otto CM, Shah PM, Shanewise JS (2006) ACC/AHA 2006 Guidelines for the management of patients with valvular heart disease. Circulation 114: E84–E231CrossRefGoogle Scholar
  3. Catmull E, Clark J (1978) Recursively generated B-spline surfaces on arbitrary topological meshes. Comput Aided Des 10: 350–355CrossRefGoogle Scholar
  4. Cirak F, Ortiz M, Schröder P (2000) Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. Int J Numer Methods Eng 47: 2039–2072MATHCrossRefGoogle Scholar
  5. Cirak F, Ortiz M (2001) Fully C1-conforming subdivision elements for finite deformation thin-shell analysis. Int J Numer Methods Eng 51: 813–833MATHCrossRefGoogle Scholar
  6. Cirak F, Scott MJ, Antonsson EK, Ortiz M, Schröder P (2002) Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision. Comput Aided Des 34: 137–148CrossRefGoogle Scholar
  7. Cosgrove D (2004) Review: view from North America’s cardiac surgeons. Eur J Cardiothorac Surg 26: S27–S31Google Scholar
  8. Daughters G, Sanders W, Miller DC, Schwarzkopf A, Mead C, Ingels NB (1989) A comparison of two analytical systems for 3-D reconstruction from biplane videoradiograms. IEEE Comput Cardiol 15: 79–82Google Scholar
  9. Doo D, Sabin M (1978) Behavior of recursive division surfaces near extraordinary points. Comput Aided Des 10: 356–360CrossRefGoogle Scholar
  10. Itoh A, Krishnamurthy G, Swanson J, Ennis D, Bothe W, Kuhl E, Karlsson M, Davis L, Miller DC, Ingels NB (2009) Active stiffening of mitral valve leaflets in the beating heart. Am J Physiol Heart Circ Physiol 296: H1766–H1773CrossRefGoogle Scholar
  11. Karlsson MO, Glasson JR, Daughters GT, Komeda M, Foppiano LE, Miller DC, Ingels NB (1998) Mitral valve opening in the ovine heart. Am J Physiol Heart Circ Physiol 274: H552–H563Google Scholar
  12. Kreyszig E (1991) Differential geometry. Dover, New YorkGoogle Scholar
  13. Krishnamurthy G, Ennis DB, Itoh A, Bothe W, Swanson JC, Karlsson M, Kuhl E, Miller DC, Ingels NB (2008) Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am J Physiol Heart Circ Physiol 295: H1141–H1149CrossRefGoogle Scholar
  14. Krishnamurthy G, Itoh A, Bothe W, Swanson J, Kuhl E, Karlsson M, Miller DC, Ingels NB (2009) Stress–strain behavior of mitral valve leaflets in the beating ovine heart. J Biomech 42: 1909–1916CrossRefGoogle Scholar
  15. Krishnamurthy G, Itoh A, Swanson J, Bothe W, Karlsson M, Kuhl E, Miller DC, Ingels NB (2009) Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart. J Biomech. doi:10.1016/j.jbiomech.2009.08.028
  16. Kunzelman KS, Cochran RP (1992) Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J Card Surg 7: 71–78CrossRefGoogle Scholar
  17. Loop C (1987) Smooth subdivision surfaces based on triangles. Masters Thesis, University of Utah, Department of MathematicsGoogle Scholar
  18. Niczyporuk MA, Miller DC (1991) Automatic tracking and digitization of multiple radiopaque myocardial markers. Comp Biomed Res 24: 129–142CrossRefGoogle Scholar
  19. Prot V, Skallerud B, Holzapfel GA (2007) Transversely isotropic membrane shells with application to mitral valve mechanics. Constitutive modelling and finite element implementation. Int J Numer Methods Eng 71: 987–1008CrossRefMathSciNetGoogle Scholar
  20. Prot V, Haaverstad R, Skallerud B (2009) Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution. Biomech Model Mechanobiol 8: 43–55CrossRefGoogle Scholar
  21. Reif U (1995) A unified approach to subdivision algorithms near extraordinary points. Comput Aided Geom Des 12: 153–174MATHCrossRefMathSciNetGoogle Scholar
  22. Reif U, Schröder P (2001) Curvature integrability of subdivision surfaces. Adv Comput Math 14: 157–174MATHCrossRefMathSciNetGoogle Scholar
  23. Ryan LP, Jackson BM, Hamamoto H, Eperjesi TJ, Plappert TJ, St John-Sutton M, Gorman RC, Gorman JH III (2008) The influence of annuloplasty ring geometry on mitral leaflet curvature. Ann Thorac Surg 86: 749–760CrossRefGoogle Scholar
  24. Ryan LP, Jackson BM, Eperjesi TJ, Plappert TJ, St John-Sutton M, Gorman RC, Gormann JH III (2008) A methodology for assessing human mitral leaflet curvature using real-time 3-dimensional echocardiography. J Thorac Cardiovasc Surg 136: 726–734CrossRefGoogle Scholar
  25. Sacks MA, Enomoto Y, Graybill JR, Merryman WD, Zeeshan A, Yoganathan AP, Levy RJ, Gorman RC, Gorman JH III (2006) In-vivo dynamic deformation of the mitral valve anterior leaflet. Ann Thorac Surg 82: 1369–1377CrossRefGoogle Scholar
  26. Salgo IS, Gorman JH III, Gorman RC, Jackson BM, Bowen FW, Plappert T, St John Sutton MG, Edmunds LH (2002) Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106: 711–717CrossRefGoogle Scholar
  27. Schröder P (2002) Subdivision as a fundamental building block of digital geometry processing algorithms. J Comput Appl Math 149: 207–219MATHCrossRefMathSciNetGoogle Scholar
  28. Umlauf G (2000) Analyzing the characteristic map of triangular subdivision schemes. Constr Approx 16: 145–155MATHCrossRefMathSciNetGoogle Scholar
  29. Votta E, Maisano F, Bolling SF, Alfieri O, Montevecchi FM, Redaelli A (2007) The Geoform disease-specific annuloplasty system: a finite element study. Ann Thorac Surg 84: 92–101CrossRefGoogle Scholar
  30. Votta E, Caiani E, Veronesi F, Soncini M, Montevecchi FM, Redaelli A (2008) Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Phil Trans Royal Soc A 366: 3411–3434CrossRefGoogle Scholar
  31. Zorin D (2000) A method for analysis of C1-continuity of subdivision surfaces. SIAM J Numer Anal 37: 1677–1708MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. Göktepe
    • 1
  • W. Bothe
    • 2
  • J.-P. E. Kvitting
    • 2
  • J. C. Swanson
    • 2
  • N. B. Ingels
    • 2
    • 3
  • D. C. Miller
    • 2
  • Ellen Kuhl
    • 4
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Cardiothoracic SurgeryStanford UniversityStanfordUSA
  3. 3.Laboratory of Cardiovascular Physiology and BiophysicsPalo Alto Medical FoundationPalo AltoUSA
  4. 4.Departments of Mechanical Engineering, Bioengineering, and Cardiothoracic SurgeryStanford UniversityStanfordUSA

Personalised recommendations